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PREFACE

These notes were prepared for a 30-hr course I taught
atHunter College, City University of New York, as visiting pro-
fessor of Chemistryinthe Graduate Division, inthe Fallof 1970.
The course was aimed at faculty and graduate students and was
supplemented with experimental sessions in the afternoon. Al-
though I assumed a basic knowledge of quantum mechanics and
familiarity with group-theoretical arguments, a detailed re-
vision of electron wavefunctions and the elementary theory
of angular-momentum operators proved useful, as well as a
brief incursion into basic aspects of electromagnetic theory
and tensor algebra. The chapters on the theoryof the g tensor
and on hyperfine interactions were developed in detail, for these
are aspects of utmost importance in spectroscopic applications.
On the other hand, due to lack of time, the theory of crystal-
field terms in S? and higher orders was only outlined.

If the course was successful, it was certainly due to
the enthusiasm of the audience that encouraged me to discuss
some of the topics beyond the limits of the written material,
helping me to improve the presentation.

Iwould like to express my appreciationto Prof. Horst W,
Hoyer, Executive Officer in Chemistry, for having arranged my
visit, and to the faculty and graduate students of the School of
Chemistry for having made my stay most pleasant.

Juan A. McMillan
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NOTES ON
ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

by

Juan A. McMillan

ABSTRACT

This report presents the fundamental aspects of elec-
tron paramagnetic resonance spectroscopy, with emphasis
on the theoretical principles underlying the interpretation of
results. A basic knowledge of quantum mechanics and famil-
iarity with group-theoretical arguments are assumed. Some
aspects of electromagnetic theory, electron wavefunctions,
the theory of angular-momentum operators, and tensor alge-
bra are briefly reviewed. The theory of the g tensor and of
hyperfine interactions in transition metal ions are treated
in detail. Tables of expectation values of hyperfine separa-
tions based on recent Hartree-Fock calculations are given
in the appendixes.

1. MAGNETIC FIELD
1.1 Definitions 5

The properties of the magnetic field are adequately described by a
vector B (called induction by some authors) such that

(a) The torque T that acts upon a linear magnetic dipole of
moment ﬁ in a uniform magnetic field B is given by

—

T =1xB. (1.1)

(b) The electromotive force along a closed path induced by its time

variation is
/ B sdo, (1.2)
>

fﬁd*

where E is the electric field vector and c is the velocity of light. Unless
otherwise noticed, the cgs system of units is used throughout. Equation 1.2
holds for any surface 5 enclosed by the loop and is valid in sign, provided
that the sense of integration on the left-hand term and the direction of the

(ol I
&la
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normal to the surface element dg are related by the right-hand convention,
in other words, if the integration proceeds counterclockwise when observed

from the positive end of do.

To define B by either equation, however, it is necessary to define
either ;_[ or E. The electric vector E is defined as the force acting on the
positive, unit point charge and, in general,

dF = E dq. (1.3)

The magnetic moment 'L_I may be defined by

— 1 o
i=<f 1d (1.4
S
in a loop carrying an electric current i.

If B is defined by means of Eq. 1.2, which requires the definition
of Eq. 1.3, Eq. 1.1 may then be used to define [/, which is then found to be
related to the electric current through Eq. 1.4. If the loop of Eq. 1.4 is a
ring of radius a, then the magnetic field in the center is, in turn,

B. = =i, (1.5)

and its direction is determined by the right-hand convention, illustrated in
Fig. 1. Since g and i are related by

. dq
i (1.6)

and Coulomb's law of interaction
between electric charges imposes a
natural unit for q, the whole system
is consistent and may be defined on
the sole basis of the units of mass,
length, and time in the cgs system.
The mks system, on the other hand,
requires the additional definition of
the Coulomb or the ampere to adopt
the practical units of the electric
system. The only ambiguity left is
provided by 47, which may or may
not appear in other definitions, ac-
cording to whether the magnetization
is defined already containing or not
the factor 4m. Elimination of 471 in

Fig. 1. Right-hand Convention



the definition of polarizations, as proposed in the so-called rationalized
mksq system, however, is made at the expense of the appearance of 47 in
other equations and does not seem to have, in my opinion, any obvious
advantage.

1.2 Properties of the Magnetic-field Vector B

e As the counterpart for the electrostatic scalar potential V related
to E by

E = -VV, (1.7)

where V 1is the operator

- J ) - 9
Sk iy S TR 1.8
v 18x+ zay+ 33, (L)

with k—’1 symbolizing the unit vectors in the three orthogonal directions of
space, the magnetic field has

B=VxAa, (1.9)

where A is called the magnetic vector potential. The cross indicates vector
product. The operations by V are also called:

(1) Gradient when V is applied to a scalar, i.e.,

= N Vv vV
= BT = —(kls— + kz§—+k3 g—z') = -grad V. (Gl

= o

(2) Curl when it involves vector product by a vector, i.e.,

ky kp ks
= - SRR R — -
B= VxA=|— — =—|= curl A or rot A. Ral
- 3x Jy oz (1.11)
Ay Ay A,

(3) Divergence when it involves scalar product by a vector, i.e.,
=% BBX aBy BBZ Sy

VY B=—+4+ ——+ — =divB = 0. Lioel 2
ox dy dz ( )

Equation 1.12 introduces us to an important property of E, a property that
is believed to hold everywhere and should be compared with

div D = 4mp, (1.13)

1%



12

where D is the electric induction vector, defined in Eq. 1.15, and p is the
volume density of electric charges. Equation 1.12 is interpreted as an in-
dication that there are no separable north-seeking and south-seeking mag-
netic charges, called monopoles. It is not ruled out, however, that separate
monopoles may appear in some high-energy processes. The search for an
isolated magnetic charge, the monopole, is one of the goals of high-energy
physicists. If a monopole is found, we will have to state that Eq. 1.12 is
true everywhere, except for a small region of space, unreachable under
normal conditions, and will not affect the low- and medium-energy magnetic
phenomena that occupy us.

That div B must be zero follows from considering Fig. 2a, illustrating
the magnetic lines of force associated with a ring current. The lines of
force are closed: There is neither source nor sink, and the number of lines
entering and leaving any close surface is the same. That div B may not
necessarily be zero everywhere follows from Fig. 2b, illustrating the mag-
netic lines of force associated with a
black box of unknown content, such as
the magnetic dipole of a subatomic or
subnuclear particle. Outside the box,
no distinction can be made between
the two sources. If the black box can-

(@ not be opened at low and medium
energies, we may not rule out the
possibility that it contains two mono-
poles of opposite charge, separable at
very high energies such as those in-
volved in subnuclear phenomena, in
which case div B would no longer be
zero inside the box.

An important equation of elec-
tromagnetism is

curl B = 4nT + E, (1.14)

0 |m>
&le

where J is the current density and €
the dielectric tensor. Equation 1.14 is
also written in terms of the electric
induction vector D related to E by

=M il (1.15)
Fig. 2. Magnetic Fields of a Ring Current (a) and
a Magnetic Dipole (b) in a Black Box In isotropic dielectrics, € reduces to

e Vi the scalar €, called the dielectric con-
.Stagt,.and D and E have the same direction in all orientations. The term
in D is called displacement current and is needed to closethe circuitbetween
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the plates of any capacitor present in it. It is zero when D is time-
independent and appears only in circuits that are the seat of an alternate
current. Therefore, for steady (direct) currents, Eq. 1.14 simplifies to

curl B = 477J. (1.16)

However, if matter is present, it is possible to distinguish between two types
of currents--bound and free--and Eq. 1.16 then takes the form

euElNBR= Rl 0= Ay oo 3 T Al s e e (1.17)

Free currents are those that may be turned on and off by switches; bound
currents are those associated with microscopic angular momenta, such
as orbital and spin, and are responsible for the magnetization M, which is
defined by

curl M = ?bound' (1.18)

In turn, it is advantageous to introduce a magnetic field vector H, sometimes
called intensity, to account specifically for the free currents, i.e.,

curl H = 47T3>free' (1.19)
The vectors g, ﬁ, and H are clearly related by
B = H+41M, (1.20)

but this expression is useful mainly inside the yoke of an electromagnet.
Curiously enough, in the cgs system, B and H are measured in different
units (gauss and oersted, respectively). The mksq system remoyves this
ambiguity by introducing a conversion factor that makes B and H very dif-
ferent in order of magnitude.

Since B and ﬁ_) cannot be distinguished in the absence of magnetiza-
tion, most books use H and not B_)in Eqeelle z’_&»s a matter of fact, tradition
has somewhat imposed the use of H instg_a.d of B. To redeem for the sin,
the magnetic field, which is symbolized I—_I», LR howev_gr, expressed in gauss.
We will not bow to the tradition of using H, but use B instead.

_’ When matter is placed in a magnetic field whose value in a vacuum
is By, the magnetic field inside the sample is

B =

gﬂ

+ 47M = By(1 +47k), (1.21)

where

a
11
wl=

(1.22)
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is called the magnetic susceptibility per unit volume and
M = «Bo (1223)

is then the net magnetization, a concept that sets the basis for classification
of matter into three categories, namely:

diamagnetic, when « < 0;

paramagnetic, when £ > 0 and is independent of the magnetic field; and

ferro- and antiferromagnetic, when « > 0 and depends on B.

For anisotropic substances, such as noncubic crystals, the susceptibility is
a second-rank, symmetric tensor.

1.3 Magnetic Moment and Angular Momentum of an Electric Charge

When a point body of mass m is moving in a central field of force,
its angular momentum due to the motion

G=mvxT, (1.24)

where V is its linear velocity and T the radius vector, is constant in the
absence of external torque. If the body is electrically charged, the angular
motion will create a magnetic moment

el :
/; o (1.4)

where do is an element of the area enclosed by the orbit and i is the
equivalent current. The integral of Eq. 1.4 clearly includes orbits of any
shape. One can substitute do by

=

0 -

-

do=iT¥xdl (1.25)

N[

as illustrated in Fig. 3 for a circular orbit, where df is an element of the

Fig. 3

Element of Area in
a Circular Orbit
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orbit. Since

-

idf= —=vdt = vdg, (1.26)

&8

Eq. 1.4 becomes, after elimination of i and cﬁ,

1 > - 1 =
= — = = 3 L= 272
e (7= 3)idq 3= q(¥ x T) ( )

Comparison of Eqs. 1.24 and 1.27 leads to
L = YG, (1.28)
where

e q (esu) | (emu) 1.29)

Zmec 2m

is known as the magnetogyric ratio.

1.4 Precession Theorem

When an atom with a permanent magnetic moment ﬁ is placed in a
uniform magnetic field B, a torque

T=71xB (1.1)

e -
acts upon it. The angular momentum G then changes at a rate equal to this
torgue; i.e.,

d > 25 e
pEe = . 1530
dtG =B ( )

—

Since G is parallel to_.;_[, the vector product ,L_Ix B is perpendicular to G

—

The meaning of (d/dt)G is then clear: The vector G rotates, but remains
unchanged in length; namely it precesses about B.

Introduction of Eq. 1.28 into Eq. 1.30 leads to

G = ¥G x B. (1.31)

&le

To solve this vector equation, one writes the components in an orthogonal
reference frame chosen in order to have By = By = 0, in which case,
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d
—_— — < 2
3 Ox = YBGy» L2t
%GY = —yBGy, (1.33)
and
d
e 1.34
< Gy (12

Interpretation of Eq. 1.34 is trivial: The component of E along the direction
of B is constant. Since the absolute value of G is unaffected, its direction
and the direction of B must subtend a time-independent angle a&. The solu-
tion of the other two equations is easily obtained. If Eq. 1.32 is again dif-
ferentiated with respect to time and (d/dt)Gy is replaced by its expression
as given in Eq. 1.33, one arrives at

dz
EZ-GX = -(yB)’Gy. (1.35)

Analogous handling of Eq. 1.33 leads to

d? ! 2
az GY = "(’YB) Gy. (1.36)
Equations 1.35 and 1.36 have the well-known form (d%/dt¥)x = -w2x

of the harmonic oscillatory motion. The solutions of Egs. 1.32-1.34 are
then

Gx = G sin q cos (wpt+ ¢y), (1L 2570)

Gy = G sin a sin (@pt+ ¢), (1.38)
and

G, = G cos a, (1.39)

where G sin o is the amplitude of the oscillatory motion and
wy, = -YyB (1.40)

is tlrle angular velocity. The phase constant %o depends on the arbitrary
choice of'the origin of time. We will later see that the angle @, which in
the classical case depends on the initial conditions prevailing when the mag-

netic field was turned on, is fixed for atomic systems by the rules of
quantization.



1.5 Field of a Dipole

Interaction between dipoles plays an important role in EPR, for the
anisotropic contribution to the hyperfine splitting arises from the inter-
action between nuclear and electronic magnetic dipoles (spins). Since the
energy of interaction may be expressed as the magnetic energy of either
dipole in the field of the other, probably the best way to study the problem

is to derive the expression for the magnetic

field due to a dipole, which, not very close
to the source, is the same in the electric
3 and the magnetic cases.

Figure 4 illustrates the field of force
o of an electric dipole of two point charges of
opposite sign (a) and that of a ring current (b).
The field inside the ring is entirely differ-
ent from the field between the electric
charges. This intrinsic difference is con-
tained in the already-known operator

equations
div D = 4mp; (1.13)
(b)
div B = 0. (=02

As one moves farther away from the
source, any difference disappears, and the
magnetic field of a ring current may be
formally treated as if it were associated
with two magnetic charges of opposite kind, which is precisely what we sus-
pect might exist inside the black box of Fig. 2b. It is therefore justified to
solve the electric case and apply the equations to the magnetic case outside
the black box. It is not that the same expression cannot be rigorously
derived for the ring current; it is, if one starts from another equation we
already know, i.e.,

Fig. 4. Fields of an Electric Dipole
(a) and a Ring Current (b)

—

B = curl A. (1.9)

But the physical meaning of the interaction is more evident when one treats
the electric dipole or when one imagines the existence of a coupled pair of
magnetic charges, in which case one may formally treat the magnetic field
as derived from a scalar potential. To solve the problem, we are going to
imagine a point dipole of moment

—

I = q dl (1.41)

1%
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The vector Cﬁ is chosen as pointing toward the negative charge, so that du
has the direction of the field between the charges. Under this convention,
cﬂz lines up parallel to an electric field in the orientation of minimum

potential energy.

We choose an arbitrary point 0 (Fig. 5) and after setting the z axis
parallel to Jp, proceed to calculate the electric field at that point.

4
-q
Il g —————— e ——————_———
S -
/ 42
\
N\
\\
i ;
| Fig. &
I
/ | Polar and Rectangular
8 : Coordinates of a
: Linear Dipole
d6 |
I
|
|
|
I
|
0 |
e

Let T be the radius vector of the dipole in the chosen reference
frame. The scalar potential at 0 due to the positive charge is

vy = 3, (1.42)

7
that due to the negative charge is

q
= rrdr’ sl

where g is, in both cases, the absolute value of the charge of one sign.
The total potential results in

1 1
dVi =V LV = -q =
t . (r+dr r)' (1.44)

After making

T ar Glie = r<l+£), (1.45)

T



one can write, to first order,

—-1-&, (1.46)
1+— s
r
after which Eq. 1.44 becomes
Sy (1.47)
2
Now, since
dr = cos 6 dJ, (1.48)
it follows from Eq. 1.47 that
o 5088 g g0 B g ) (1.49)
r? r2
Remembering now that
E = -grad V, (1.7)
one may write, from Eq. 1.10,
)
dE, = - — dV. (1.50)
oz .
From Fig. 5, one obtains
Bzl YZ+ 52 (1.51)
and
cos 6 = = (1.52)
T
and finally arrives at
) z d 1 322 du 2
SRR TR Gl - Ly - = —=(3 cos? 6-1).
™ [T ] e (TP T P S ()
17530

Analogous expressions may be derived for dEx and dEy. In the magnetic
case, B takes the place of E. The components B, and B, usually do not
count in the strong-field case, for any magnetic moment is assumed to be

19
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quantized along z, and therefore its energy in the field of a dipole, which is
in turn quantized in the same direction, is determined by B, alone. For
an extended dipole, the B, component is given by

3cos’6-1
s f Jams Pl o (1.54)
i 65

In Section 7.4, we will see how Eq. 1.54 is adapted to atomic phenomena.

1.6 Symmetry of Electric and Magnetic Fields

Because EPR is essentially a magnetic experiment performed on an
electric system, the symmetry properties of both fields present interest.
To gain knowledge on these fields, let us look at the operations of symmetry
that can be performed in each case, after assuming infinitely extended, uni-
form fields. In practice, the symmetry operations will affect, to first order,
only the immediate environment, so that the conclusions reached for infin-
itely extended fields will still be valid for finite fields.

A rotation through any angle about any axis that is parallel to the
field direction is a symmetry operation. Let its symbol be C%, where
a is any angle about such axis. The electric field, in addition, is sent
into itself by reflection through an infinite number of planes containing the
rotation axis, planes that are symbolized oy. Its symmetry point group
is therefore C,y (wm), inSchoenflies and international notation, respectively.
Inversion, in reversing the electric field, is not a symmetry operation.
This is due to the polar (irrotational) character of E which is given by

E = -VV. ()

The V operator changes sign under inversion, since

= = - 3 3 3 3
k + Kk k = —_— 5.8
L kg + k3 3-2) <k1 5 Ky S + ks az) (1.55)

while V, being a true scalar, does not change sign; i.e.,
(o, v, =) = V(-x,-y,-z) = V(x, Vs ) (1.56)
In turn, B does not change sign under inversion, because

—

E: Vx A (19)

and both V and A do change sign. The vector potential A is polar. There-

fore, a op plane--perpendicular to the direction of the field--will send B
into itself, since
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oy, =i el o UIR— St R o8 (1.57)

and both i and C7| are symmetry operations of the magnetic-field group.
But the 0y planes that are present in the electric case would reverse B,

for since i is a symmetry operation
in the magnetic case, if the oy planes
Pty were also symmetry elements, there
s would exist twofold axes perpendicular
to Cy that would reverse B. The
reflection properties of B can be seen
in Fig. 6, where, for simplicity, only
one magnetic line associated to a

ring current is shown reflected in an

ordinary mirror. The symmetry
point group of the magnetic field is
then Cyh - oo/m. For further infor-
mation, see Appendix A.

Fig. 6. Reflection Properties 5
of Magnetic Lines A somewhat peculiar conse-

quence of this argument arises from
the application of such an analysis to the black box of Fig. 2; a little thinking
will convince us that north poles have to become south poles after reflection
(and conversely) as long as the reflection is performed through the physi-
cist's mirror (P mirror for brevity) that we have used so far. The P mirror
does not change the electric charges. Consequently, when some nuclear
phenomena are considered, one arrives at the conclusion that the laws of
nature could be different after reflection. This ambiguity is removed if the
mirror reverses time (T mirror) and chagges electric charges (C mirror).
Nature is then symmetric under reflection through the PCT mirror. At
least, no experiment has so far been performed that proves otherwise.
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2. MAGNETIC SUSCEPTIBILITY AND PARAMAGNETIC RESONANCE

2.1 The Magnetic Properties of Matter

In the previous section we referred to the classification of matter
into dia-, para-, ferro-, and antiferromagnetic. In this section we are
going to consider mainly paramagnetism, for it is this property, when
measured under conditions of resonance, that gives rise to electron para-
magnetic resonance (EPR or ESR). Before we derive the equation of state
for paramagnetic substances, it will be convenient to remember hov.l these
properties are defined and studied. Let us recall that when matte.r 1s. .
placed in a magnetic field of strength By in a vacuum, the magnetic field B
inside the sample is given by

B = By + 47M = Bo(l +47k), (a52T))

where
- (122
K = By )

is called the volume susceptibility and represents the magnetization in-
duced by the unit magnetic field. As we anticipated before, Kk is negative
in diamagnetic substances, and positive otherwise. When k is positive,
one encounters two situations: Either k is independent of the applied mag-
netic field, or it is not. In the former case, the substance is said to be
paramagnetic and an equation of state relating the magnetization, the applied
field, and the temperature may be found. Otherwise, k£ exhibits a strong
dependence upon the applied magnetic field, there is hysteresis, and as a
consequence it is not possible, in general, to establish an equation of state
because the sample 1s not in thermodynamic equilibrium. Paramagnetism,
on the other hand, implies thermodynamic equilibrium, and an equation of
state may then be formulated. While diamagnetism is a universal property
of matter that may eventually be disguised by the superposition of para-,
ferro-, or antiferromagnetism, these latter occur only when the substance
contains electrons whose spins are not compensated. When these latter do
not significantly interact among one another, they are independently and
reversibly polarized by an external magnetic field, and the substance ex-
hibits paramagnetism When, on the contrary, interaction among spins is
strong. they couple together, lining up at a particular orientation within
certain boundaries known as magnetic domains, thus giving rise to ferro-
and antiferromagnetism and other spin alignments as yet unclassified.

The bearing of magnetic properties in chemistry was early recog-
nized, and a whole new branch, magnetochemistry, soon developed. But it
Wwas not until the advent of EPR that interpretations could be freed of



sometimes false working assumptions. Before we proceed with a more

detailed study of paramagnetism, it will be convenient to introduce two
useful definitions.

The volume susceptibility «, although of theoretical interest, is not
very useful in practice. It is more convenient to work with the suscepti-
bility per unit mass

Y- £, (2-1)

where 0 is the specific gravity. The advantage of using X over k arises
from the fact that most methods for determining magnetic susceptibilities
measure X rather than kK. Although X has a practical value, it does not
have theoretical bearing unless it is referred to one mole, i.e.,

XM = W (2.2)

where W) is the molecular weight and xp; is known as the molar
susceptibility.

2.2 Paramagnetic Susceptibility

To derive an equation of state for paramagnetic substances, we are
going to simplify the problem by assuming a paramagnetic gas of molecules
containing one unpaired electron with no orbital angular momentum, in
which case the magnetic properties arise exclusively from the spin of the
electron. Later we will see the reason foxg this simplification. In the
absence of a magnetic field, all the molecules may be described as having
the same energy E;. It is true that there is an energy distribution, but if
we wait long enough, both the time
and the space average will approach
E,. Upon application of a magnetic
field of strength B, some spins will
line up parallel (ms = -3) and have
minimum potential energy, while
others will line up antiparallel

E; = Eo + %gHBB

E. - Eo- Sgugh (mg = %) and have maximum po-
B tential energy, as illustrated in
Fig. 7. The energy levels are the
Fig. 7. Zeeman Splitting of Electronic Levels Zeeman levels of energies
E+ = Ep + mggupB for mg = 3 (=2))

and

El
I

. = Ey + mggupB  for mg = =, (2.4)
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and the energy difference between both states is

AR = g,U.BB, (2"5)

where g is the free-electron spectroscopic splitting factor (Landé factor),
equal to 2.0023, and pg = 0.9273 x 107% erg/G is the Bohr magneton.

In thermal equilibrium, the populations of the levels are related by

%—t = exp(-gugB/kT) (2.6)
and the net magnetization is
M = 3gug(N. - Ny). (2.7)
The difference N. - N4 is obtained from Eq. 2.6 as
W, = NG PNy N(Z -1), (2.8)
IS ke
where
N = N+ + N- (229
is the total number of molecules and
gLBB
= : 2,10
kT (2.10)
For
gupB << kT, (2215)

which is the prevailing condition in ordinary measurements, Eq. 2.7, after
substitution of Eq. 2.8, reduces to

Ng’ud
e E 2.12
4KT (2.12)

If N is the Avogadro number, M represents the molar magnetization, and
the equation of state may be written as

c
M = 7 (2.13)



or

©
M= =B, (2.14)

G = =—=— = 0.3752 cgs deg (2.15)

is called the Curie constant.

The value of X at room temperature (T = 300°K) turns out to be
small; for this reason, tradition has imposed the use of 107 cgs as the unit
of susceptibility. Typical values for spin-only paramagnetism at room
temperature are of the order of 1200 (107 cgs) per mole. Departures from
this value indicate existence of orbital angular momentum, these depar-
tures having been of utmost importance in magnetochemistry.

2.3 The Susceptibility Tensor

Although the preceding derivation of Curie's law carries an impor-
tant physical meaning, the real situation in most cases is by far more
complicated. It is precisely having this view in mind that we chose a very
special kind of paramagnetic substance. When measurements are performed
in single crystals of lesser than cubic symmetry, the magnetization vector
is no longer parallel to the applied magnetic field at all orientations. In
general, Eq. 1.23 must be substituted for by

—>

M=k -B, (2.16)

where &k is a second-rank, symmetric tensor. Since the tensor character
of k is due to the tensor character of the various terms of the spin
Hamiltonian used in EPR, it seems appropriate to develop the basic algebra
of this type of operator in view that it will be needed time and again in fur-
ther analyses.

Equation 2.16 may be written in matrix notation as

Mx Kxx Kxy Kxz Bx
My |=| kyx Kyy Kyz || By | (2.07)
M K K B
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where the vertical arrays are column vectors and the square array is a
3 x 3 matrix. Equation 2.17 is a short notation for the three equations

B._tEE B

MX = KXXBX + )CXY y Xz

; 18
My = KyxBy + kyyBy + Ky;By; (2.18)

2z

KZXBX + KZyBy + KZZBZ'

z
The 3 x 3 matrix of Eq. 2.17 is referred to as a second-rank tensor; it
transforms an independent vector variable into a dependent vector quantity.
Since vectors are tensors of first rank, we may say, in general, that the
rank of the property tensor (in this case, the magnetic susceptibility) is
equal to the sum of the ranks of the tensors representing the independent
variable (in this case, the applied magnetic field) and the dependent quan-
tity (in this case, the magnetization).

The susceptibility tensor K, together with most second-rank tensor
properties, satisfies the condition of being symmetric with respect to the
diagonal, i.e.

(2.19)

Kas

Q=

i
where the subscripts i and j stand for the coordinates. For convenience,
many authors use the numeral subscripts 1, 2, and 3 taking the place of x,
y, and z, respectively, a convention that we adopt, and write

ko= ke K3 |, (2.20)

in which allowance has already been made for the symmetric character.
This latter may be proved on thermodynamic grounds in the case of
polarization in general. When the tensor properties represent steady states
and not equilibrium states, such as transport phenomena, the symmetric
character appears as a consequence of Onsager's reciprocity theorem of
irreversible thermodynamics. It is possible, however, to arrive at the
symmetric character by accepting the experimental fact that there is a
privileged orthogonal reference frame, called canonical, along whose axes
the dependent vector quantity and the independent vector variable are par-
allel. In this reference frame, the off-diagonal matrix elements vanish and
Eq. 2.17 takes the diagonal form
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Mx K11 0 0 By
My |= DR 0 |- By |- (2.21)
Mgz 0 O K% Be

Q= A gl amai ] (2:22)

where the matrix elements are direction cosines, may be used to transform

[y . " . . . . . .

K. Since kK is a 3 x 3 matrix, its expression in the new reference frame is
B

obtained by a similarity transformation by Q, i.e.,

~ ~ ~

k'=Q'-k-Q, (2.23)

where Q7! is the inverse of Q, obtained by exchanging rows and columns.
It is then found by direct computation that, for an arbitrary Q, the matrix
elements of k satisfy the condition of Eq. 2.19.

When consideration is given to the symmetry of the crystal, sym-
metry requirements impose restrictions on the matrix elements of tensor
properties. These restrictions are immediately obtained by performing
the similarity transformation of Eq. 2.23 by the symmetry operations
characteristic of the crystal. For example, the cubic system is charac-
terized by four threefold rotation axes along the cube diagonals which, in
Miller notation, are referred to as the (111) directions. One such axis is,
for example, defined by the direction

il T 5 B
Ky = — (Kio * Ko1o + Koo1) (2.24)
V3

where the K's are unit vectors in the directions indicated by their sub-

scripts. A rotation through 27T/3 about this axis is represented by the
orthogonal matrix

0 (2.25)
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1 reference frame, which, incidentally, diagonalizes the sus-

in the crysta
Direct calculation leads to

ceptibility tensor.

k, 0 0 o ar - e SERORER O 0 0n1
OB 08 | = ES0E S O T 05 G0 1 0 O (2.26)
OF =0 Sicy ) 0 0 K3 (o} b 0]
But since the threefold rotation is an operation of symmetry,
e () TR OB
e e e O ) 1 (2027
0 0" k; 0 0 Kk;
which can only be true if
hen gl At an (2.28)
and since
a0 0 1 0 O
G ONN=c (RORSS RSO F= (2.29)
(0 5 (o2 (O 0 |

is a scalar, we conclude that there cannot be second-rank anisotropy in the

cubic system.

In crystals of the trigonal, tetragonal, and hexagonal systems, rota-
tions about the principal axis (chosen as z axis) make it impossible to dis-
tinguish between x and y; thus,

Ky = Ky = Ky; K3z = K“' (2.30)

which may be proved by performing the similarity transformation by the
rotation matrix

cos (2m/n) -sin (2m/n) O
Cp =| sin (2m/n)  cos (27m/n) 0 (2.31)
0 0 1

STy — 5 6
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In orthorhombic crystals, there is no restriction other than that the
tensor shall be diagonal in the crystal reference frame. The three values
of K are different.

The monoclinic case, having only one axis fixed, which is either a
twofold rotation axis or the normal to a plane of symmetry, introduces one
independent parameter: the direction of one axis (x or y in the first setting,
x or z in the second), in addition to the three principal values of the sus-
ceptibility, adding to four independent parameters.

Finally, the triclinic system, having no axis fixed by symmetry,
leaves six independent parameters: the three principal values of the sus-
ceptibility and, for example, three Euler angles.

The derivation of these restrictions using the theorem of group in-
tersection is shown in Appendix A. These properties have an important
bearing in EPR, where they hold for local, rather than bulk, symmetry and
will often be recalled.

The macroscopic susceptibility is restricted by the symmetry of
the crystal, while the susceptibility of each individual paramagnetic center
within the crystal is restricted by the local symmetry of its environment.
This fact subtracts, to some extent, interest from bulk measurements, for
they simply represent spatial averages and do not carry any obvious infor-
mation about the local symmetries which have always been the subject of an
educated guess in magnetochemistry. This is probably one of the biggest
shortcomings of magnetochemistry in general. Such ambiguities are lifted
by EPR since it is possible to independently observe centers that due to
their anisotropic character resonate at different magnetic fields.

That the local symmetry of a paramagnetic center need not be the
symmetry of the crystal, even in the absence of distortions, follows from
inspection of Fig. 8 where there are indicated 10 sites in a simple-cube
unit cell whose local symmetries are:

I': Op (eightfold coordination); M: Dyp (001);
R: Oy, (sixfold coordination); I EAEE ST
SINGE S I(IUT); 2: Cuy (110);
Z: Cyy (100); A: Cay (010);
X: Dgp (010); T: Cgy (001)

This information is particularly important in the study of interstitial para-
magnetic impurities and trapped radicals produced by irradiation. For
paramagnetic metal ions, these latter usually occupy the I' site. However,
the onset of Jahn-Teller distortions usually descends the symmetry of the
site to that of one of the lattice subgroups.
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Fig. 8
Sites of Different Symmetry

Pty i Simple-cube Unit Cell

2.4 Magnetic Transitions: EPR

A second look at Fig. 7 suggests the possibility of promoting elec-
trons from the lower to the upper level by absorption of photons of energy

hv = gugB (2.32)

as long as the lower level remains more populated than the upper one.
This is the basic principle of EPR. Replacing figures for the parameters,
one immediately finds that for a field of 3500 G and g = 2, for example,
one may expect to find resonance for frequencies of the order of 10 GHz.
Fields of up to 15,000 G may be readily obtained in the laboratory, and
gadgetry to produce and handle microwave frequencies of some 8-10 GHz
had been fully developed by the end of World War II for use in radar in-
stallations. It is only natural that under such circumstances EPR had to
start, as a full-fledged technique, in this region of the electromagnetic
spectrum, although the first experiments were done at lower frequencies.

We will have opportunity to discuss the advantages and disadvan-
tages of working in different bands. For the time being, it will be con-
venient to return to Eq. 2.32 and the statement that resonance does occur
and electrons are pumped to the upper level. But if resonance does occur
and electrons are pumped to the upper level, the difference in population
that made resonance possible in the first place will soon disappear and the
absorption of photons will stop. Fortunately, nature has provided electrons
in the upper level in excess over the thermal-equilibrium value with a
radiationless process by which they may return to the lower level, thus
securing a steady resonance absorption. This mechanism, called spin-
lattice relaxation, allows the excess electrons in the upper level to trans-
fer their excess energy to the lattice. The electromagnetic energy
absorbed by the transition is then released to the lattice in the form of
heat, by phonon processes. These processes, however, are characterized
by relaxation times whose values limit, sometimes severely, the micro-
Wwave power that may be used in the experiment, lest saturation occur.
Although saturation imposes a limit to the power, it is extremely useful
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in at least two instances, namely, when one is interested in studying the
spin-lattice relaxation mechanisms themselves, and when one is interested
in performing double-resonance experiments such as ENDOR (discussed
in Section 7.10).

The importance of EPR does not obviously lie in the performance
of an experiment such as the one involving the resonance of Eq. 2.32 when
g = 2. Its interest lies in that g is often anisotropic, due to orbital con-
tributions, in which case Eq. 2.32 must be replaced for by a Hamiltonian
of the type

A

% = upS ‘g - B, (2.33)

where g is now a second-rank, symmetric tensor, and S is the effective-
spin vector operator, which is defined after making the multiplicity of the
level equal to 2S + 1. The eigenvalues of Eq. 2.33 are the energy levels
between which resonance transitions are in principle possible. The
Hamiltonian of Eq. 2.33 is obtained by perturbation theory and has to be
thoroughly justified, especially because of the definition of the effective-
spin vector operator, which operates not only on the spin part of the per-
turbed electron wavefunction but also on the orbital admixture.

An additional feature of EPR is provided by the presence of nuclei
with spin, for in such a case the unpaired electron will experience an
effective field due to the superposition of the applied magnetic field and
the magnetic field at the electron due to the nuclear magnetic moment. If
the spin of the nucleus is, for example, I = 1, each level of Fig. 7 will in
turn be split into two, corresponding to the.nuclear spin eigenvalues i%.
Two resonance transitions are then observed, and their separation, pro-
vided the nuclear magnetic moment is known, contains relevant informa-
tion about the electron wavefunction. Figure 9 illustrates the case of
Gi= op it = 1, discussed above. This interaction is also, in general, a
tensor quantity and is written

~

g« I, (2.34)

mg = m=

l—

Fig. 9

Splitting of Magnetic Levels
in the System S =1 = }

=

+
rol—
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where A is known as the hyperfine-interaction tensor. The Hamiltonian
then takes the form

b ~

o= nB g VB R SR, (2.35)

which is by no means complete, but anticipates the type of work involved in
the interpretation of paramagnetic spectra.

Our knowledge of second-rank tensors indicates that in cubic local
symmetries the Hamiltonian of Eq. 2.35 reduces to its simplest form,

which is
% = jiggS - B +AS -1, (2.36)

where g and A arenow scalar quantities. In axial symmetries,

s = pplg)S,B, + g,(5,B, + SyBy)] AR AL(SXIX + Syly), (2%3100)
and in orthorhombic symmetries,
F = |p(g,5,B, + 8xSxBx + 8ySyBy) + A S, I, + AS, T, + AyS L. (2.38)

In lower symmetries, é and A need not be diagonal in the same reference
frame, in which case if one is diagonal it is necessary to compute off-
diagonal terms in the other. The situation, however, can be handled with a
bit of experience and the two diagonalizing frames readily identified after
enough spectra at appropriate orientations are obtained.

2.5 Experimental Detection of Resonance

When microwave frequencies are used in EPR experiments, the con-
dition of resonance must be searched for by varying the magnetic field,
because microwave sources can usually be tuned within a rather narrow
band. A simplified scheme of transmission spectrometer is shown in Fig. 10.
A source generates microwaves that are transmitted by a waveguide of rec-
tangular cross section and metallic walls. The microwave power trans-
mitted down the line is detected by a crystal rectifier chosen for its linear
response to the microwave power falling on it. Some absorbing material,
usually graphite-coated plastic, prevents reflections in the wall behind the
detector. A paramagnetic sample is placed just inside the waveguide through
a hole in the narrow face, where the magnetic field due to the microwave is
a maximum. The static magnetic field generated by an electromagnet (one
of whose pole pieces is shown in Fig. 10) is varied at a slow rate as the
crystal current is plotted against B. A constant level of microwave power
falling on the detector is thus recorded until the value of the resonance field



is reached. At this point, absorption by the sample increases, as indicated
at the bottom of Fig. 10, thus decreasing the microwave power that reaches
the detector. As soon as the condition of resonance is no longer fulfilled,
the power falling on the crystal detector increases and the crystal current
rises to its former value. Although conceptually simple, this device is not
a particularly sensitive one. Other devices, based on a special array of
transmission lines, make it possible to detect as little as 10! spins for a
linewidth of 1 G. The techniques involved in the experimental detection of

resonance are critically evaluated in Charles Poole's book, cited in the
list of references.

CRYSTAL
DETECTOR

Fig. 10
Simplified Microwave Transmission Spectrometer
MICROWAVE
SOURCE

w

>
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3. ELECTRON WAVEFUNCTIONS

3.1 Choice of Reference Frame

A study of the mechanics involved in handling electron wavefunc-
tions when crystal field and magnetic phenomena are taken into considera-
tion is of utmost importance. Electron wavefunctions are solutions of the
Schroedinger equation, which may be expressed in different systems of
coordinates. Among them, spherical polar and Cartesian orthogonal co-
ordinates are preferred. While the first frame is more useful in most
theoretical considerations, the second one leads to straightforward bases
for group representation and simplifies crystal-field treatments when F
and higher multiplicity states are considered. We are going to analyze
these solutions in the two systems, separately.

3.2 Wavefunctions in Spherical Polar Coordinates

The spherical polar coordinates are the radius r, the polar angle 6,
and the azimuthal angle ¢, related to the Cartesian orthogonal coordinates

by
x =rsinfcos¢; y=rsinOsing; z = r cos 6, (3.1)

as illustrated in Fig. 11. The volume element dV, as shown in Eipg N2
in turn given by

dV = r® sin 6 dr d@ d¢. (3:2)

P(x,y,2); P(r,8, $)

Fig. 11. Spherical Polar and Cartesian Fig. 12. Volume Element in Spherical
Orthogonal Coordinates Polar Coordinates



In this reference frame, the solutions of the Schroedinger equation for a
single electron in a free atom (central force system) take the form

1 .
¥ = N2Rp 4(r) - Py |m| (cos 6) - ™9, (3.3)
i

where N2 is a normalization coefficient, n, #, and m are the principal,

angular, and magnetic quantum numbers, and P[/,lml (cos @) is a Legendre
polynomial, listed in Table I. The set of wavefunctions is orthonormal; i.e.,

<¥i|Y5> = by (3.4)

where, as usual,
= Jb e =y
éij{ . ] (3.5)

Dirac's bracket nomenclature is used, meaning

<y3|¥;> = fw?wj dr, (3.6)

the integration being carried over the whole configuration space. The
symbol I?//j) is called a ket, while < ¢;| is referred to as a bra and the

pairs [¥;>, <7j| are conjugate to each other. The advantage of the bracket
symbolism is that one may write inside whatever symbol may be relevant

for the problem under consideration, omitting the integration sign, which is
to be understood whenever a bra and a ket are fused together as in <ili>or
in <i|?|i>, where f is an operator. In this symbolism, the expectation value f

TABLE I. Legendre Polynomials up to £ = 4

Pj,o(z) = 1 P;,2(z) = 15z(1 - 2°)

Py o(z) = 2 P,,3(z) = 15(1 -ZZ)%

Pia(z) = (1 'ZZ)% Py o(z) = (1/8)(352*- 302%+3)

P o(z) = 3(32°-1) Py, (z) = (5/2)z(1 - zz)%(7zz+3)
Fg,i(z) = 3a(l - ZZ)% Py (z) = (15/2)(1 - 2°)(72° - 1)

Pg 2 (243111 5a%) Py 3(z) = 105z(1 -zl)‘zz‘

Payo(@)h —hzz(bz - 3) Py 4(z) = 105(1 - 2%)

il
Ps,i(z) = (3/2)(1-2%)"(52°- 1)

Note: 2 =‘cos 8.
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of an operator f is then given by

<> = <yslHly> 3

Since f is an observable and must therefore span the totally symmetric
representation ofthe configuration symmetry group, symbolized T}, the follow-
ing relation must be satisfied, lest f vanish:

DHE S0 o Tl s Fj’ (3.8)

where I'j, I'y, and I"J- are the representations spanned by ¥, £, and zpj, the
cross indicates direct product, and the symbol € should be read "is con-

tained in."

The radial functions Rn’ﬂ(r) are orthonormal; i.e.,

<n,4|n', £'> = Spn1dpp- (3.9)
They are spherically symmetrical, i.e.,

1—‘R(r) = e (3.10)

and are also symbolized
T R
i (B.01)

in Hartree-Fock theory.

The angular functions are gathered together in what is called a
spherical harmonic whose general expression is

_ mt|ml)e [2841 . (- [m]):]? im
Yﬂym = (‘1)( i )/ li A m] . P[”Iml (cos 9) - e ¢, (3.12)

where
(-1)(m+|m]| )/2

is a phase factor consistent with the application of the angular-momentum
1ad.de.r operators to the 2/ + 1 manifold corresponding to each value of £.
This is due to the fact that Ly = EX +if. and _@_ = ,ZX - il change the sign
of the wavefunctions when either the wazefunction operateg on or the operated
one have positive, odd m. This phase s'etting was introduced by Condon and
Shortley and, if followed, leads to linear combinations for real solutions that
sometimes differ from the expressions commonly used in chemistry books.
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In most cases, however, the phases do not play an important role, although
they have to be taken into consideration when operating with the angular-
momentum ladder operators, to be discussed in some detail in the next
chapter.

The spherical harmonics of Eq. 3.12 are orthonormal; i.e.,

<dm|fm'> = 6556 (8.13)
They fulfill the requirements needed to form a (24 + 1)-dimensional vector
space, which is called the 2/ + 1 manifold of the wavefunctions of a given £.
They span the p(4) representation of the full rotation group O(3), indicating
(2£+1)-fold orbital degeneracy in the free atom.

Due to the spherical symmetry of filled shells, the spherical har-
monics are still rigorous solutions of the Schroedinger equation for many-
electron atoms. The radial functions have to be computed by iteration

methods, such as Hartree-Fock theory.

The spherical harmonics of Eq. 3.12 are eigenfunctions of the
angular-momentum operator /, with the eigenvalue m; i.e.,

b¥ym = mYy o, (3.14)
since the z axis is, by definition, the axis of quantization. In turn,
BPYp o = ME+1) Yy 0, (3.15)

.
with the same eigenvalue within the 2/ + 1 manifold. The algebra of the
angular-momentum operators is discussed in detail in the next chapter.

In the crystal field, when states of +m and -m cannot bedistinguished,
the following linear combinations are introduced:

1
Vin = ﬁ(Yﬂ..m”?-m) e i
and
s i *
¥S, = E(Yz,_m—Yﬂl_m) (3.17)

where it is easy to verify that

Yy = (1)mtml)ey, (3.18)

This procedure is used to avoid complications arising from phase con-
siderations, since Yy _,, with m > 0 is always positive.
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The wavefunctions of Egs. 3.16 and 3.17 are real and carry no

angular momentum; i.e.,
<P&OF S1B,198.°T 5> = 0, (3.19)
although, of course,

Ezwrcnor S 2(8+1) u’;:nor & (3.20)

Solution of Eq. 3.12 for several values of / and m leads to the
following cases:

=0 s electrons

g = o> = (3.21)

J = 1, p electrons

\/;i; cos' 8" = %T 7 B22)
) = il 1= _\/8:3‘7; sin 6 (cos ¢ +1i sin ¢) = =\/Szﬂ(x+iy); (3.23))

B3 3
W E T S = \/E;sin 9 (cos ¢ -1isin¢) = \/8—;(x—iy), (3.24)

where x, y, and z are referred to unit radius and are therefore dimension-
less, taking the place of x/r, y/ry and z/r, respectively,fin  Eqgs. 3215

1

L @

1

2(0)

The solution |1, 0> corresponds to m = 0 and is, of course, real.
The other solutions correspond to states of m = 1 and m = -1 that repre-
sent orbital angular momenta which are counterclockwise and clockwise,

respectively, when the system is observed from the positive end of the axis
of quantization (z).

L = 2,d electrons

¥(0) = |2, 0>

; /1—27(322-1); (3.25)

¥(1) =2, 1> = —@z(x+iy); (3.26)



WD) = 12, 1> = /2 ey, (3.27)
¥@) = [2, 2> = /35 (et iy)s (3.28)

We2) = |2, 2> = /2 (x- iyl (3.29)

Solutions for higher values of / are available in the specialized literature.

The real combinations of Eqs. 3.16 and 3.17 are, in turn, the
following:

el
1 3
Py = [HESLSS :%(Il"l>‘|l’l>) :,\/%x; (3.30)
P —i<|1 SIS EE NS = ﬁy (3.31)
2 ’ B sl 4m

Notice the appearance of changed signs as a consequence of the phase con-
vention affecting states of positive odd m only. The sign indicated in the
kets |I, 1+ > and |1, 1-> always corresponds to z//fn and wfn, respectively.

=
d D 2 = (B2 2.2D) = Jﬁ SN )
x*-y* ’ N2 ’ lém . e
i | e
dygy = 12, 2-> = A (12,-2>-12.2>) = £/ = =vi (3.33)
1 2 . *\/ﬁ ; 3.34
dxz = IZ, 1+> = ’ﬁ(|2,-1>“| YA )= a5 X% (3.34)
d,, = |2 A A DT 1>):ﬁyz (3.35)
s SRRhE ! 47 77" .

Solutions for higher values are available in the literature.

Just as for the complex wavefunctions discussed earlier, each
manifold of a given / is 2/ + 1 degenerate in the free atom--0(3)
symmetry--and in spherical symmetry in general. The degeneracies in
typical crystal fields will be discussed in Section 6.1. The set of real
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wavefunctions is also orthonormal and defines, together with ‘| 00>,

a (2£+1)-dimensional vector space for each value of /. These wavefunc-
tions serve as bases for the representation of symmetry point groups, but
are broken down to their complex components under a magnetic field, giving
rise to various degrees of incompletely quenched orbital angular momentum,
depending on the strength of the crystal field.

3.3 Wavefunctions in Cartesian Orthogonal Coordinates

The solution of the angular part of the Schroedinger equation in
Cartesian orthogonal coordinates leads to the so-called cubic harmonics,
which have the general, real form

e NagRbye. (3.36)
where x, y, and z are dimensionless and defined in the interval (1, -1), and

@ bica=N0, (3.37)
with k integer,

b bEfR =N (3.38)
and N% is a normalization coefficient. Appropriate linear combinations of

particular solutions of Eq. 3.36 are usually taken in order to satisfy the
orthogonality condition, as follows:

f = 0, s electrons astEbitich =N 0 == e ()
5
Ve = N3, (3.39)
L =1, p electrons i nar @ =l
X
p(a=1) = Nix; (3.40)
1
p(b=1) = Nzy; (3.41)
1
P(c = 1) = N2z, (3.42)
b = 2,d electrons a+b+c =2

There are six solutions for Eq. 3.36, namely,
2R 2 5
X ¥, 2, Xy, Xz, yz. (3.43)

However i i ] :
: » they define a five-dimensional vector space because of the ex-
istence of one linear relation,
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S T S (3.44)

that decreases to five the number of linearly independent functions. An
orthogonal set is, for example,

32 i yz, XY, %7, V7 (3.45)

aside from normalization coefficients. The linear relation of Eq. 3.44,
incidentally, identifies with an s state, already counted for a = b = ¢ = 0.

£ = 3, f electrons a+b+c =3

The number of solutions is ten, namely,
x>, y3, 23, xy?, x2%, yx?, yz?, zx?, zy?, xyz. (3.46)

Among them, one finds three linear relations:

x4 xyZ + xz% = X;
v+ vy +y2t =y (3.47)
zx? + zyZ + 2% = g,

which identify with the already-counted p functions and reduces the number
of independent functions to seven. They are chosen as

xyz, x(y* - 2°), y(2* - %), z(x* - y*),
x(2x% - 3y% - 32%), y(2y? - 32 - 3x%), Z(Z‘Zz = sk 2] (3.48)
to satisfy the orthogonality conditions.

In general, solution of Eq. 3.36 leads to 3(4+1)(£+2) expressions, of
which only 2/ + 1 are linearly independent. The advantage of the cubic over
the spherical harmonics lies in that the behavior of cubic harmonics under
operations of symmetry is simple and the finding of group representations
becomes straightforward.

3.4 Spin Functions

In the previous treatment, no consideration has been given to the
electron spin. The quantum-mechanical description of the electron spin is
formally analogous to the treatment of orbital angular momentum. A spin
function which is not a function of the spatial coordinates is introduced in
the electron wavefunction. This function is named ]OL> or I[‘3>; according to
whether the spin is "up" (+3) or "down" (-1). Analogously to what is done
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for the orbital angular momentum, the following operators are defined: §z:

Sy, Sy, and §%. It will be sufficient now to state the fundamental equations
Eela> = o>, 53B> = -z|p (3.49)
Sla> = 2E+1)]a>, &> = 2z+1)|B>. (3.50)

We will see later how these operators simplify the theoretical treatment.



4. ANGULAR-MOMENTUM OPERATORS

4.1 Infinitesimal-rotation Operator

The elements of symmetry of a free atom, which belongs to the group
of all proper and improper rotations, are three orthogonal, infinitesimal-
rotation operators to be defined later in this section, the spatial inversion
operator, and the corresponding products, which are the improper-rotation
operators. From the point of view of most physical applications, we re-
strict our discussion to the subgroup OT(3) of all proper rotations. Notice
that there is a nondenumerably infinite number of rotations generated by
each infinitesimal-rotation operator, and that the use of the infinitesimal-
rotation operators I, Iy, and I, is justified by the fact that any infinitesimal
rotation in quantum mechanics may be decomposed, to first order in the
angle, into three infinitesimal rotations about orthogonal axes. The choice
of these axes to define the rotation operators is clearly arbitrary since,
due to the high symmetry of the group, all axes are strictly equivalent; in
other words, the physical space is isotropic. The laws of nature are in-
variant under the group of all rotations (isotropy of space) and under the
group of all translations (uniformity of space). However, to simplify the
treatment of the group of all rotations, it is convenient to adopt, arbitrarily,
three axes, x, y, and z, and preserve z as the unique axis of symmetry
when the symmetry is descended to that of the axial groups. The first task
that we face is the definition of the infinitesimal-rotation operators. This
may be accomplished in a conventional way by considering a rotation through
an angle o about, say, the z axis.

Let R(a,z) be such a rotation and R(0,z) the identity. We define the
infinitesimal-rotation operator, as applied to a vector ¥ in the xy plane, as

lim R(a,z) - T - R(0,z) + F _ e
a—>0 a da

T. (4.1)

The operation of Eq. 4.1 may be expressed, in terms of partial differentials,
as

o
Ry
(074

Fox, d3Fdy _(x3,3v3);
5 Bl ol (Ba o= " da Sy)r' (4.2)

x da

o
Q
Q

Since the square of the radius vector
e s (4.3)
is constant, a differential rotation through do will result in

r? = (x+dx)? + (y+dy)? = %% + y? + 2(x dx + y dy), (4.4)

43



44

and then

xdx+ydy = 0; dy/x = -dx/y. (4.5)
Figure 13 shows, in addition, that

da = -dx/y = dy/x, (4.6)

which follows immediately when T is rotated to coincide with y and x,
respectively. From Eq. 4.6 it follows that

A gdt S (4.7)
) d
E'XE;_YX’ (4.8)

which is the differential-rotation operator about z that we were looking for.

yHlyp——————————— =

Eig-i13

<
i
|
I
|
|
|
|
|
|
!
I
I
|
oA

\ Infinitesimal Rotation in the xy Plane

x+dx

Since the quantum-mechanical, differential o

: perator associated with
rotation about z is

~E )
L2 2) -

we may write

d _.n
o - iz (4.10)
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in view of forthcoming applications to be discussed later. Equation 4.1 may
now be written

lim Rl@z) - 1 _ s
o0 a

2 (4.11)
where we have written 1 for the identity transformation. The rotation
R(a,z) is then given by

R(@.z) = 1 +ial, for a<< 1. (4.12)

Although Eq. 4.12 is clearly restricted to infinitesimal rotations,
R(a,z) can always be expressed in terms of the infinitesimal-rotation op-
erator I, for an arbitrary value of a. Any rotation through a may be
performed by n successive a/n rotations, in which case a/n can be made
small enough to apply Eq. 4.12. Therefore,

R(a.z) = R®(a/n,z) = lim [1+i(a/n)1,]" = 1 + ial,
n-—>o

o bia SN Sl
+ (laéllz—') i (IO;IvZ) R elaIZA (4.13)

The exponential expression is, however, formal and should be understood
as an abbreviated notation for the series, since in each case the exponential
has to be expanded in order to operate on a function due to the differential
character of fz.

Let us now study the decomposition &f a small-angle rotation into
elemental orthogonal rotations. For simplicity, we first consider a rotation
about an axis £ lying in the yz plane, as illustrated in Fig. 14. One may
write

R(x,6) = R(a sin 8,y) - R(a cos 8,z) + O(a?), (4.14)

Fig. 14

Decomposition of an Infinitesimal Rotation
in the yz Plane into Two Infinitesimal
Rotations about y and z
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where the term O(a?) is a correction to second order in a that tends to zero
more rapidly than o, representing the difference between the length of the
arc and that of the tangent segment. In view of Eq. 4.12 we may rewrite

Eq. 4.14 as

R(o sin 6,y) - R(a cos 6,z) = (1+ia sin 6 - Iy) . (1+ia cos 6 - 1Iz), (4.15)

neglecting terms in a?. By equating Egs. 4.12 and 4.15, i.e.,

~

1+iof1E = 1+i0sin 6 - Iy + io cos 6 - I, (4.16)
one finally obtains
'I\e = sin@fy+coselz. (4.17)

It is left to the reader to generalize the argument to any arbitrary orienta-
tion of the £ axis which leads to the general expression

fﬁ = sinecos¢fx+sinesinq>iy+cossz (4.18)
in spherical coordinates or
Ig = Ay + mi, + ol,, (4.19)

where £, m, and n are the direction cosines of the £ axis in an orthogonal
reference frame.

In conclusion, we notice that with the help of Egs. 4.18 or 4.19 and
4.13 we may express any rotation in terms of three infinitesimal-rotation
operators I,, I, and I,, and that in consequence these may be used
to generate the full rotation group. Next, we have to derive some interesting
properties of these operators arising from the fact that they do not commute
with one another, for which we are going to introduce the quantum-mechanical

angular-momentum operators in order not to lose contact with the physical
problem.

4.2 Classical Angular Momentum

The angular momentum M of a particle P of negligible dimensions
is defined in classical mechanics as

M= TFxp, (4.20)

=y ] : ) .
where r is its radius vector and P its linear momentum, as shown in
13tvdallsy



In Cartesian orthogonal coordinates, Eq. 4.20 becomes

05k
M=[x y =z [=klyp,- Zpy) + kp(zpy - xp,) + k;(Xpy - YPx)s
pX py Pz

> - -
where k;, k;, and k; are the three orthogonal unit vectors in the
of x, y, and z, and

T xE1+yE2+zK3
and

P = bk t Pyiz + pyks.
Since

M = My + MK, + Myk;,
a comparison with Eq. 4.2]1 immediately leads to

Mx = ypz - ZPvy

and

M, = xpy - YPyx

(4.21)

directions

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(L2

which are the expressions of the components of the classical angular mo-

mentum in Cartesian coordinates.

z
M- Txp
i 5
_| Fig. 15
P Angular Momentum of a Particle
= of Linear Momentum p

\
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4.3 Quantum-mechanical Angular-momentum Operator

In quantum mechanics, the dynamic variables are replaced by op-

erators, which are:

coordinate operator: multiplication by coordinate q, and

linear-momentum operator: left operation by ~if B

After substitution, the classical components Mg of Eqs. 4.25-4.27 become
the quantum mechanical operators Lq according to

b= -ih’<y a—az - z%) (4.28)

= : 9 o)

LY = —1ﬁ<za—x'xg>, (429)
and

~ e} )

L, = —1h‘<x5—y-ya—x>, (4.30)

which have dimensions of an angular momentum. However, it is convenient
to work with the dimensionless, Hermitian rotation operators 1, of IDe )
related to Lq by 2

~

1 =

q Lg: (4.31)

q

St

which result, for each coordinate in turn, in

Ao e )

e £ '1<V$ 'Za_§>' (4.32)

A _ - a a

Iy = -1<za_x-x-a_z->’ (4.33)
and

et o Tt gutmgei sy

' I(XE'YB_X)- (4.34)

The 1
2 rOtati: q opel.‘ators of Egs. 4.32-4.34 do not commute; therefore the
g n grou}? 1s not Abelian. After making the appropriate products
y direct calculations, one immediately arrives at the commutation relations
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B ety = [L1] = i1, (4.35)

Rt =11 - i1, (4.36)
and

el = 1,0, =il (4.37)
where the expression in brackets is the symbol for commutator; i.e.,

[A,B] = AB - BA (4.38)

Very useful definitions to be explored later are those of the ladder operators:

Raising operator: i+ = ix +il (4.39)

Vi

and

Lowering operator: 1_ = LS iiy (4.40)
whose commutation relations with I, and with each other are easily found
to be

Ly (4.41)

L (4.42)
and .

[L,.1.]=21,. (4.43)

To complete the argument, it is necessary to introduce an operator of a

type not yet mentioned, which arises naturally in the algebra of Lie groups,
of which the full rotation group is one. This operator consists of the scalar
product of two infinitesimal operators, which commutes with all infinitesimal
operators of the group. Such an operator is known as a Casimir operator
and in the case of the angular momentum is called the total angular-
momentum operator and defined as

T2 -T2 172 472
S R R g (4.44)

The fundamental commutation relations
B = TP g, - (4.45)

can easily be verified. The following alternative expressions for T2 are
immediately derived from the commutation relations and the definition of
the ladder operators:


http://ci.ru
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I R L (4.46)

- 305 +15,)+12, (4.47)
and

T o= 1,0+ + 10, (4.48)

which are, again, obtained by direct methods.

4.4 Eigenfunctions of the Angular-momentum Operators

Let us consider the 2/ + 1 manifold of spherical harmonics Yﬂ,m'
The operator of Eq. 4.12, as applied to any of them, will only affect the
azimuthal part eim® due to the choice of z as the axis of quantization.

After a rotation through @, the azimuthal part becomes lm@ta) § o
Rilayz) elm(b e eim(<b+rj,) 3 eimz;l, 3 eim(ib' (4 49)
which permits us to identify R(%,z) with
R(a,z) = el™a, (4.50)

which is the character of the representation of the rotation through o
spanned by Yy ., in the continuous group C, of rotations about z. For
infinitesimal rotations, we may write

R(a,z) - eim® = (1+ima) eim, (4.51)
which, by comparison with Eq. 4.12, leads to

etm? = meimd, (4.52)
or, in simplified notation,

a
I,u,, = mu

Lo (4.53)
where‘ Um 1s a vector spanning the mth representation of the C, group.
Eguatmn 4.53 is fundamental and identifies u,, as an eigenfunction of 1
with the eigenvalue m. :

The advantages of defining the ladder operators i+ and I_ of
E_qs. 4.39 and 4.40 will now be apparent, since in operating on up, they give
rise to a base vector within the same manifold that transforms according to
the (m+ 1)th and the (m -1)th representations, respectively, namely,

IZ(I+um) = (I+IZ+1+) u, = I+(fz+1) e (m+1) f+um, (4.54)



and analogously
Luy) = (m-1)Tu,. (4.55)

The vectors I u, .and I_u,,, although transforming as u4; and u,_;, are
not usually normalized. But the transformation properties are not affected
by normalization factors. The unnormalized function Uy, = Cup, will
always be an eigenfunction if u,, is itself an eigenfunction, since

izUm = iZ(Cum) = m(Cum) = mU... (4.56)

By applying Eqs. 4.54 and 4.55 again and again, we will finally arrive at the
highest and lowest values of m in the chosen vector space, supposed to be
finite. If we call j the highest value of m, it is clear that

I+L1 -

Tal4u;

= = (j+1)I+uJ- (4.57)
is inconsistent with the assumption that j is the maximum value of m within

the manifold and Eq. 4.57 must vanish. Analogously,

Tu_: = -(j+1)i_u_j =0, (4.58)
and we are left with 2j + 1 vectors of

m = -j, =(j-1), .... G-1), j (4.59)

Since the number of base vectors is necessarily an integer, j may be
integer or half-an-odd integer. Half-an-odd yalues give rise to double
groups in which the identity is rotation through an angle of 47, while rota-
tion through 27 just reverses the base vectors.

If we look now at the full rotation group in which f_,, and f_ are sym-
metry elements, the 2j + 1 vectors, because they are changed into one
another by the ladder operators, must span an irreducible representation,
which is known as the DY’ representation.

4.5 Normalization of the Ladder-operator Eigenfunctions

We have seen that the operators I, and I_ raise and lower the ei-
genfunctions in such a way that

izi+um = (m+1) f+um (4.54)
and
Ll = a0l 1wl (4.55)
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"~
and we anticipated that if up, was normalized, the new eigenfuncth}s TRu)
and Iu_, of eigenvalues (m+1) and (m- 1) usually were not normalized.

- m . . . . s 2
Assume that they are normalized after division by N(m); i.e.,

T,u
Ni(_nxf)x = Uit (4.60)

In such a case,

= Lums = (m+1) upia. (4.61)

Lanbd

In the following, we are going to derive the value of N(n}) First, however,
we have to find the eigenvalue of u,, when operated by I2. Let this eigen-
value be x; i.e.,

Pt sz (4.62)
The expectation value of 2 sh according to Eq. 3.7,

<I2> = <uplPluy,> = <ug ey, >, (4.63)
which may be expanded, with the help of Eq. 4.48, as

<um|izum> = m(m+1) + <umli_i+um>. (4.64)
To solve the second term of the right-hand side of Eq. 4.64, we have to
remember that the angular-momentum operators are Hﬂermitian, since they
have real eigenvalues. Let us recall that an operator P is Hermitian if

fu*lsv =i vE*u* Gyl (4.65)
which in bracket notation is expressed as

<ulPv> = <v|P*u>. (4.66)
Therefore, since 1. is Hermitian and I* = f+,

Jubl Qo) ar = [ @ou) T 0*

nl-(Lyu, ) et vt (4.67)

or, in bracket notation,

<um|1-l+um> = <I+um|1+um> =_N"'(m)<um+1]um+l>. (468)
which, since u

m+1 s normalized, simplifies to

<up T Tju > = N3(m). (4.69)
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In view of Eqs. 4.69 and 4.64, we may write

<umlll\zum> = m(m+1) + N?(m). (4.70)
The left-hand side is the expectation value of iz; therefore, from Eq. 4.62,

Qugfifu > = x<uplu> = x, (4.71)
and the normalization coefficient is then given by

N2(m) = x - m(m+1), (4.72)

Since N?(m) cannot be negative, we obtain for the eigenvalue x the general
condition

x = m(m+1), (4.73)
even after repeated application of the raising operator in Eq. 4.60. Since

Iu = N(ujy, = 0, (4.74)
if follows that N(j) = 0 and then x = j(j+ 1), which finally gives

fzul(le) = j(j+1)ul(%) (4.75)

for all (2j+1) ur(ilx) vectors that transform according to the D(J) representa-
tion of the full rotation group, irrespective of the value of m. The values of
N(m) follow from Eq. 4.72. Consequently, the infinitesimal-rotation opera-
tors of the full rotation group have eigenfunctions uri]:1 with the following
properties:

fzugl) = mul(:li,l) withj = m = -j; (4.76)
£,u) < (5G40 - mme o), - G-m)G+m+ ¥ o @7)

1 u(j) {j(j+l)—m(m—l)}%u(j) , = {(j+m)(j-m+1)}%ugl)_l; (4.78)

]

G) (4.79)
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5. THE PHENOMENON OF RESONANCE

5.1 Mechanism of Absorption

When a magnetic field of strength B is applied to a spin .system,
the spin angular momentum is quantized in the direction of the‘ﬁeld .and
precesses about it in the way described in Section I8 hene is a differ-
ence, however, in that the magnetogyric ratio of Eq. 1.28 must, in the case
of the electron, be multiplied by ge = 2.0023. For simplicity, we take
ge = 2 and rewrite Eq. 1.28 as

Le = 27G, (5.1)
where the resolved angular momentum is given by
= 5.2
G = mgh. (5.2)
Replacing Eq. 1.29 for y and Eq. 5.2 for G, one arrives at
L. = 2mg —h_—q (emu)| = 2mgup, (5.3)
= 2m

where

KB = . q (emu) = %C q (esu) = -0.92732 x 10°% erg/G (5.4)

2m
is the Bohr magneton introduced in Eq. 2.5.

In Section 1.3 we anticipated that the angle o of precession, which
was fixed in the classical case by the conditions prevailing when the mag-
netic field was turned on, is, in the quantum-mechanical model, imposed
by the conditions of quantization. We may now look at this problem again
and remember what we learned in Chapter 4 about angular-momentum
operators. Exactly in the same way as we have orbital angular-momentum
operators with orbital angular wavefunctions that are eigenfunctions of
these operators with the general properties given in Eqs. 4.76-4.79, we
may write S instead of I and take m = +3 for one electron, which gives
rise to two base vectors u&}?’ and u(_ll/,zz). Moreover, remembering Eq. 4.31,
one may write

= A

S = h‘S, (55)

where both S and S are operators. We then find their properties very
easily, as follows. :

; Let [o> = ‘15%2) and |,B> = u(_lll/zz) be the two spin functions of a single
unpaired electron introduced in Section 3.4. We find:



Sla> =sE+1)a> = la>, (5.6)
§2g> = s(s+1)|g> = 2>, (5.7)
Szla> = Lla>, (5.8)
Szlp> = -31p>, (5.9)
Si|a> =0, (5.10)
S_la> =p>, (5.11)
Belg> = la>, (5.12)
and
S_|g> = o, (5.13)
and, using Eq. 5.5, we obtain
§%la> = #?s(s+1)|a>, (5.14)
§2|g> = m%s(s+1)|p>, (5.15)
Szla> = 1rfa>, (5.16)
and .
§Z|B> = -2 |p>. (5.17)

Thus, the expectation value of the angular momentum éz given by |oc>, for
example, is

<al§yla> = <alizla> = L1, (5.18)
while the expectation value of éz ig, for 5 = —;—,
<al§la> = <p|§2[B> = 2P (5.19)

4

The electron spin may be described according to Egs. 5.18 and 5. 19 as an
angular momentum 7 +/S(S +1) (v/3/2) with resolved value mgh = h‘,
This latter is the Just1f1cat1on for Eq. 5.2; the former explains why the
actual magnetic dipole precesses about the direction of quantization, im-
posing conditions upon the value of the angle of precession.

Let us assume that the precession occurs inside a cavity which is
the seat of a standing microwave of magnetic field vector of strength
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BEIN= Boel®t + Bye~iot (5.20)
in a direction perpendicular to the externally applied, static field Bext, as
illustrated in Fig. 16. Absorption of microwave power will then occur if
the microwave frequency is equal to
ABSORPTION the frequency of precession of the
spin angular momentum. This is
easily visualized if one considers
Eq. 5.20 where the two terms of the
right-hand side represent counter-
clockwise and clockwise rotating
magnetic fields whose resultant,
Bl(t), oscillates in a perpendicular
fa«t  direction to the static magnetic
field. One of the two components
Fig. 16. Precession of the Electron Spin will have the sense of rotation of the
in the Cavity Magnetic Fields precession and, provided both fre-
quencies are the same, will continu-
ously accompany the spin, forcing it to change its precession angle a to the
other quantum-mechanically allowed value. This jump corresponds to a
flip of the electron from the low-energy orientation m, = -3 to the high-
energy orientation mg = 1 and will be accomplished by absorption of a
microwave photon; i.e.,

MICROWAVE
PHOTON

Fw = hy = AE = 2AmgupB_ . = 2upB__, (5721)
since

fane = - (-2} = L (5.22)
The assignment of mg = -1 to the low-energy level is due to the negative

sign of the electronic charge; the magnetic moment is opposed to mg and
therefore lies parallel to the external magnetic field, corresponding to
minimum potential energy. In operator notation, we may write the
Hamiltonian as

A~

- o0eS - F, (5.23)

where B stands for the external field. We may write Eq. 5.23 in terms of
the spin operators as

F = 2up(S,B, + SyBy S IBR) (5.24)

and since, by assumption,

B, =B; Bx = By, = 0, (5.25)



we are left with

% = 2upS,B. (5.26)
Operating on the states |a> and IB >, WE get

<alzla> = 2upB<alS,la> = upB (5.27)

and

<Bl%|B> = 2upB<BIS,|B> = -upB, (5.28)

which are the two energy levels of a free electron in a magnetic field, their
difference being given by Eq. 5.21.

5.2 Relaxation Processes

In Section 2.4, we saw that steady absorption of power occurs be-
cause the electrons promoted to the upper level return to the lower level
by radiationless mechanisms. We cited one of these mechanisms: the
spin-lattice interaction. In this section, we are going to analyze this and
other relaxation processes, as they are generally called. First, we should
notice that these processes are exponential in time and lead to "decay"
curves of the population in excess over the thermal-equilibrium value
which may, and indeed are, measured by pulse techniques. Thus, we may
define as relaxation time the time required for a drop of the signal inten-
sity to a conventional fraction of the initial intensity, such as 1 - 1/e. The
precise definition is not needed in the argument that follows, which is
essentially valid in order of magnitude.

The effect of the spin relaxation on EPR measurements appears in
connection with Heisenberg's uncertainty principle. Recall that this prin-
ciple states that it is impossible to determine, precisely and simultaneously,
the momentum p and the position coordinate q of a particle, or any pair of
conjugate variables such as, for example, energy and time. The uncertainty
6 in each observable is given by

u

6p-dq = i (5.29)

OE - ot

Il

7. (5.30)
I1f we substitute the relaxation time 7 for 6t, we find
SAE - T = I, (5.31)

where 6 AE is now the uncertainty in the transition energy. Since this
latter is given by
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AE = hiw, (5.21)

where  is 27 times the microwave frequency, we may write the uncer-
tainty in the transition energy as

SAE = Idw, (5.32)
which immediately gives
Gt =l (5.33)

Interpretation of Eq. 5.33 is straightforward. If the relaxation time is very
short, the absorption signal will be very broad, and conversely, if the re-
laxation time is very long, the absorption signal will be very narrow, as-
suming absence of other broadening and narrowing mechanisms.

Equation 5.33 may be used for an operational definition of the re-
laxation time as the value for which

Tow = 1 (5.34)

after a convention has been adopted to measure dw, such as, for example,
the width of the absorption line at half-height.

The physical reason behind the relaxation processes was explained
by Bloch as applied to nuclear relaxation processes. His equations de-
scribe equally well the behavior of an electron-spin system, as follows.

The basic idea behind Bloch's treatment is that the magnetization of
a substance tends exponentially toward its thermal-equilibrium value M,
due to two well-defined processes of interaction. Suppose that in our cavity
the electron magnetic moments are precessing about the resultant of the
external field and the instantaneous value of the oscillatory field B;,. Turn-
ing off the B field will, in general, leave the electron magnetic moment
pointing in a direction that will not be the direction of the external field
Bext. The electron magnetic moment will start to precess about Bgyt in a
nonequilibrium cone. If the direction of Beyt is taken as the z axis, the
component of the magnetization along z will increase as the magnetization
vector M moves toward the z axis. This process requires the dipole to
give up energy to the lattice and is called spin-lattice relaxation. At the
same time, the component perpendicular to the z axis will also change,
dge to a more complex effect. The component of the magnetization perpen-
dicular to the z axis was given, while B, was applied, by the vector sum of
all the individual electron magnetic moments along such direction; these
electrons were precessing about individual fields arising from B, and Bext
and those due to local magnetic interactions. As soon as B, is turned off,
the coherence of the individual components is lost and M, the component
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of the magnetization perpendicular to z, starts to decay, also exponentially.
This process involves spin-spin, rather than spin-lattice, interaction and is
likely to have a different relaxation time. If both relaxations are assumed
to be exponential, they may be expressed by Bloch's equations

(@ dtININ= (1T, ) (v - M) (5.35)
and

(@/dt)hM, = -(1/T,)M,, (5.36)
where

T, = spin-lattice or longitudinal relaxation time,
and

T, = spin-spin or transverse relaxation time.

In terms of spin operators, T, is associated with the change in
states given by the eigenvalues of éz. The transverse relaxation time T,
accounts for the fact that the randomness in equilibrium of the S, and Sy
components of the various spins of a sample is broken down by the micro-
wave field. Randomness is removed because the actual magnetic field act-
ing on each electron is given by the vector sum of the external and the
microwave fields and does not in general coincide with the direction of the
former. Terms involving Sy and Sy have then to be taken into account,
giving rise to various degrees of coherence. The loss of this transverse
coherence when the microwave field vanishes determines the relaxation
time T,, which in turn affects the line width, through Heisenberg's prin-
ciple. When T, is very long, almost perfect coherence is achieved and the
line is very narrow. These types of broadening determine, if they are domi-
nant, the shape of the absorption line as Lorentzian, together with other
processes such as exchange interaction between like centers, which has no
classical analog. This shape is easily recognizable: It narrows the absorp-
tion curve in the center and broadens it in the low-absorption tails. When
the width of the line is due to random orientation in the presence of anisot-
ropy, it takes the form of a random-distribution function and called Gaussian.

A typical case of exchange narrowing is provided by solid DPPH
(1,1-diphenyl-2-pycryl hydrazyl), which is a rather stable radical of struc-

tural formula

- INOZ
\ /\
N : N— ——NO,
/o B O

that is widely used in EPR as a standard.
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5.3 Zeeman Hamiltonian When J Is a Good Quantum Number

—

When Russell-Saunders coupling is dominant, the vectors L and S
couple together to give a vector J according to

e TS (5.37)

To the vector 3’ there corresponds a quantumnumber J, whichis an integc?r or
half-an-integer according to whether S is aninteger or half-an-in.teger, sigcet
is always aninteger. WhenRussell-Saunders coupling occurs, J isa goo‘d quan-
tumnumber. Inthe absence of an external magnetic field, the 2J + 1 manifold of
states of my = -J, -(J-1),...,(0-1), J is degenerate. The degeneracy is lifted
by the magnetic field, and the Zeeman term of the Hamiltonian takes the form

# = ggugd - B. (5.38)

For B = B,, Bx = By = 0, and the state IJmJ>, we find, in general,

where [Jmy> is an eigenfunction of 32 with the eigenvalue myj. Next we
proceed to evaluate gj.

The vector diagram of angular-momentum coupling in the Russell-
Saunders case is illustrated in Fig. 17, at the top. The bottom of the same
figure shows the coupling of the asso-
ciated magnetic moments. Two fea-
tures strike our attention. On the
one hand, the magnetic dipoles are
oriented in the opposite direction to
that of the angular momenta; this is
due, as we have already seen, to the
negative sign of the electronic charge.
On the other hand, we notice that the
magnetic moment of the electron is
twice the length of its angular mo-
mentum in the arbitrary units in
which both orbital angular momentum
and magnetic moment have the same
length. This is due to the anomalous
electron g value, which, as anticipated
before, is 8s = 2.0023 =~ 2, instead of
g1, = 1 for orbital magnetic moments.
We may write the following values for
the length of the vectors quantities of
Fig. 17:

Length of spin vector = 7ZV/S(S +1);

Fig. 17. Association of Magnetic Moments
in Russell—SaundersCoupIing s a0



Length of orbital vector = Zv/L(L+1); (5.41)
Length of J vector = 7Z/J(J+1). (5.42)

In turn, the magnetic moments are given by

Mg = gs‘quS(S+l) (5.43)

and

Hpa = ng.BvL(L+ 1), (5.44)
and that in the direction of 3., which is the one in which we are interested, is
Ky = K1, €OS O + Ug cos A. (5.45)

If we use Eqs. 5.40-5.42 and the property of the triangles of sides a, b,
and c,

a? + b? - 2ab cos (a,b) = c?, (5.46)
the trigonometric functions are given by

S et ) ) = s (5.47)

/B L)

and

s(S+1) +I(T+1) - L(L+1)'
24/S(S+1) J(T+1)

COB A = (5.48)

Remembering that gy, = 1 and gg = 2, and making

gIHBVI(T +1) (5.49)

for notation consistency, one finally arrives at

[

J(Iel) £s(S+1) - L(L+ 1)_

27(7+1) i

s il

Departures from this value are usually due to admixture of excited states.

5.4 The General Case: Effective-spin Hamiltonian

The Zeeman Hamiltonian when spin-only paramagnetism exists and
when J is a good quantum number is isotropic and the g value is a scalar.
This is not, however, the general case; admixture of excited states not only
imposes a departure of the g value from the ground state one, but also
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determines in most cases the appearance of anisotropy, as explained in
Section 2.4. We are now going to consider the general problem of con-
structing a Hamiltonian suitable for computation. We assume that the
paramagnetic ion is in a known environment. In other words, we assume
that we have solved the crystal-field problem and know, in consequence,
the splitting of the electronic levels.

There are in a paramagnetic system three magnetic operators:
the electron-spin operator S, the electron-c}\rbital angular-momentum
operator I:, and the nuclear-spin operator I. In all three, we define op-
erators along x, y, and z, as well as the raising and lowering operators
defined in Egs. 4.39 and 4.40. We notice, incidentally, that the formalism
of these operators is exactly the same in all cases; their difference con-
sists in the type of eigenfunctions they have, as indicated by the letter used
as their symbol. Thus, S operators operate on electron-spin coordinates
and commute with all others, L, operators on angular functions of the
spatial coordinates and commute with all others, and i operators on the
nuclear-spin coordinates and commute with all others. Therefore, when
we have, for example, an expression such as £ - 8itis supposed to oper-
ate on the wavefunction Il&ma,) in the following way:

<dmall, - Syltma> = <fm|L,[fm><alS,|a> = im, (5.51)
because I, commutes with |a> and S commutes with |£m>.

In the magnetic experiment, we have to consider six terms in addi-
tion to the crystal-fie}d terms to be discussed later: the three terms aris-
ing from coupling of S, L, and I with the external magnetic field E, and

2~

the three interaction terms § . I:, T f, and § - . They are usually written

Hyp = wg(L+28) - B, (5.52)
#zN = -gniNi - B, (5.53)
S 5.9 5 -1
Srup = K8 - T+ 2upguy 434 )E 17 =, (5.54)
i r
TG = R ME) o = S e (5.55)
and
L1

I‘3 ‘
Both «.elect.ron orbitelxl and spin Zeeman coupling are taken together. The
netg.atwe sign a}ffectmg Eq. 5.53 arises from the fact that the nuclear mag-
netic moment is generally positive, as opposed to the electronic charge.
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Therefore my and the resolved magnetic moment have the same sign. All
the terms, on the other hand, correspond to a decrease in the potential
energy. Another way to look at it is to state that My the nuclear magneton,
is defined as a positive constant, while the Bohr magneton up is negative,
according to Eq. 5.4. The gy value for the nucleus is introduced because

of the use of the nuclear magneton. The magnetic moment of the nucleus
is then

nuclear magnetic moment = gnupVI(I+1), (5.57)

and its resolved Vvalues in the magnetic experiment are, in complete anal-
ogy with L and S,

MIgNUN- (5.58)

We may therefore define nuclear-spin wavefunctions that are elgenfunc-
tions of the T operator. For convenience of notation, when I = 3, these

wavefunctions are called ]ocN> and |gN>. Thus, the properties of the T
operators are:

Plag> = 10+ Dloy>; (5.59)
P2l > = 11+ 1)|pn>s (5.60)
Lalay> = dHay>s (5.61)
Tlpn> = -3lBn> + sy (5.62)
filagg> = 0; (5.63)
flan> = [Bn>s (5.64)
LN > = loe i (5.65)
T Ipy> = . (5.66)

When Eqs. 5.52 and 5.54-5.56 are worked out with perturbation
theory, as we see in Chapters 6 and 7, it is possible to gather the different
effects in two terms:

A

~ug8-g-B+8-A-T, (2.35)

which is the Hamiltonian introduced in Section 2.4. We have now to add the
nuclear Zeeman term of Eq. 5.53 and at least three other terms that will be
discussed in Chapter 8. We finally obtain
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A B S T o A
{-7/:;LBS'g'BwLS'A-I—ZuBngNI-B+D[Sz-%S(S+1)]

o el

+ E(%-S5) + P[T% - 110+ 1)] + P (& - 1), (2.36)
where D and E are crystal-field terms that vanish when S = 1 and P and
P' are nuclear electric-quadrupole terms that vanish when I = 1, dis-

cussed in Sections 8.1 and 8.3.

The first term includes spin and orbital Zeeman coupling. The
second term includes hyperfine interaction and orbital effects. The spin-
orbit coupling term of Eq. 5.55 is now hidden in the first two terms and in
the crystal-field terms. Therefore, most of the individual effects listed in
Egs. 5.52-5.56 have lost their identity in the new Hamiltonian, to the extent
that the spin operator S that appears in Eq. 5.67 can no longer be taken as
the spin operator of Section 5.1. The new operator, called effective-spin
operator, not only operates on the spin coordinates, but also_,—mted

in Section 2.4, on the unquenched orbital angular momentum. Strictly, one

should use a different symbol for this operator, but the fact that it ap-
proaches the ordinary spin operator as the admixture of excited states
decreases has imposed the use of the same symbol. In the following chap-
ters, we are going to discuss separately the various terms of the spin
Hamiltonian of Eq. 5.67.



6. THEORY OF THE g TENSOR

6.1 Crystal-field Splitting of Electronic Levels

By crystal field we mean any environment about a paramagnetic
ion or an inorganic radical arising from the more or less regular distri-
bution of electric charges (ions) or electric dipoles (for example, water of
hydration) around it. The crystal-field approach strictly applies when
there is no overlapping between the central ion atomic orbitals (AO) and
the immediate neighbors, which we refer to from now on as ligand mole -
cules. In the presence of various degrees of covalency, it is necessary to
make linear combinations of AO's of the central atoms and the ligand
molecules to form molecular orbitals (MO's). In all cases, the symmetry
requirements remain exactly the same. For simplicity, we are going to

review quickly the results of crystal-field theory as applied to paramagnetic

ions and leave the MO approach for later discussion.

The nature of the crystal field lies in the creation of an electric
field around the central ion. As we have seen in Section 1.6, the point group
of a uniform electric field is C,,, (*m), containing therefore infinite planes
of symmetry whose intersection determines the «=-fold axis of symmetry,
C,. The problem for a paramagnetic ion surrounded by a more or less
regular, three-dimensional array of immediate neighbors reduces to find-
ing the symmetry point group of the configuration and the strength of the
electrostatic interactions.

It is convenient to start by studying a regular-octahedron arrange-
ment of ligands which belongs to the symmetry point group Oy (m3m).
Appropriate distortion along the diagonal intersecting the centers of any
pair of parallel faces in the octahedron will descend the symmetry to the
trigonal point groups. Analogously, a distortion along opposed vertices
will lead to the tetragonal groups. Further distortions will eventually
give rise to the point groups of lower symmetry.

Let us first consider the regular octahedron. Having solved the
Schroedinger equation taking the z axis as the axis of quantization, which
is one of the three equivalent octahedral axes, we find ourselves with
several manifolds of different/, according to what was discussed at length
in Chapter 3. The existence of planes of symmetry containing the z axis
makes the pairs of complex wavefunctions (x+iy)” and (x - iy)? equivalent
since they represent states of +m and -m, and the magnetic moments are
reversed by planes of symmetry parallel to them. The equivalence of
(x+iy)n and (x - iy)™ becomes obvious when one considers the xz plane of
symmetry, which only changes y into -y. We have then to take linear
combinations of both wavefunctions, such as those given in Eqgs. 3.16 and
3.17, which are no longer complex, or, simply enough, the real orthogonal
solutions studied in Section 3.3.
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An inspection of Fig. 18 and Table II will convince us that for
a d! ion, the fivefold manifold of d orbitals splits into a threefold manifold
of orbitally degenerate orbitals of low energy (because the electronic re-
pulsion is minimum) and a twofold manifold of orbitally degenerate orbitals
of high energy (because the electrostatic repulsion is maximum). In a
d? ion, on the other hand, the splitting will be reversed, as indicated in
Fig. 19 because promotion of an unpaired electron can only correspond to
the unpairing of a paired one, a process that may be described as promotion
of a positive hole in the opposite direction. In the hole formalism, which
is rigorous, the sign of the crystal field changes, and the splitting of levels
is reversed.

We may now effect a tetragonal distortion in the octahedron of the
d’ configuration by either compressing or elongating the octahedron about z.
Both cases are illustrated in Fig. 20. A strong distortion by elongation
leads to the square planar configuration so common in Cu?t(3d?,2D) and
Ag?*(4d°,’D) complex ions. A further orthorhombic distortion, also indi-
cated in Fig. 20, removes all orbital degeneracies. This is a natural
consequence of the fact that all orthorhombic and less-symmetric point
groups are Abelian; all the representations are therefore one-dimensional,
and all bases have to be taken separately. Abelian groups that are not
cyclic cannot have orbital degeneracy. There is, however, spin degeneracy,
as stated by Kramers' theorem, which is considered in the next section.

6.2 Kramers' Theorem of Spin Degeneracy

Kramers' theorem states that the energy levels of a system of
atoms in an external field of purely electrical origin are necessarily twice
degenerate if the number of electrons in the system is odd. This is the
basic theorem of EPR, for the magnetic field lifts the spin degeneracy left
by the crystal field, thereby creating magnetic levels between which
electronic transitions may be observed.

K]

/ Fig. 18
@ |/
Octahedral Splitting of the
=

Manifold of d Orbitals

(xy, xz,yz)

0(3) o
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TABLE II. Character Table and Bases for the Representation of the O}, Group

Fig.

Op = m3m,
cubic.
2
EHG(e 9060 T6C," T3Ca(=Cy) " 1”65, 85, 30} . 6og
Ag | 1 1 1 1 1 1 1 1 1 1
Ay | 1 1 i -1 1 Neely 1 1 il
Eg 2 -1 0 0 2 2 0 -1 2 0
ity 0 =il 1 — il 3 1 0 =il =
Tog | 3 0 1 =) -1 Asirar= Of =] 1
A 1 1 1 1 1 -1 -1 -1 =1 -1
Al 1 = Sl 1 - el =i 1
Ey, 2 -1 0 0 2 -2 0 1 -2 0
el £ i~ 1 =il = o] 0 1 1
Tou | 3 0 1 -1 -1 -3 1 0 1 -1
Bases:
Alg x? + y? + 22
E (ZZZ =%t - yz.
g &3
A,
Tlg (RXvRvaz)
T (xy,yz, xz)
Azu Xyz
T (x,y,2) [ x(2x% - 3y% - 322), y(2y? - 32% - 3x?),
z(22? - 3x% - 3y?)]
Tz [x(y? - 22), y(22 - %%), z(x* - y?)]
/ \\\ ! Xz
/ \ (xz, y2)
/’ ‘\\\ (xz,y2) _:.——‘===m' — “" ¥z
/ z \ ta ] X
/ = I ————— 1]
Bl o]
0® E; ‘\ / z
z z
m— sV 5
N l ) 2 2_.2
\ JER & xE-y 3z22-)
\\\ // ‘\\ g "\ 2 /’l
\‘, OBLATE REGULAR ELONGATED AN ORTHORHOMBIC

\ - OCTAHEDRON OCTAHEDRON  OCTAHEDRON DISTORTION
9

Fig. 20. Crystal-field Splitting of the 49 Con-
19. Equivalence of the Hole Formalism figuration in Various Symmetries



Kramers' theorem appears as a consequence of the polar character
of the electric vector and the axial character of the magnetic vector. In a
system of an odd number of electrons, at least one of them must have its
spin uncompensated. Let it be represented by the spin vector 5. We apply
an electric field which is characterized by infinite planes of symmetry
containing the ©-fold axis. The spin vector will lie in one of them. Since
the spin vector is axial, it will be reversed by such a plane, with the result

— —

-5 = g - 5. (6.1)

— —

Since gy is an operation of symmetry in the electric field, -S and S must
have the same energy and the level is then twofold degenerate. This
degeneracy is lifted by the magnetic field, which qua;rgtizes the spin vector
and does not contain o,. In the new system, S and -S have different energies,
giving rise to the splitting of levels that allows electron transitions to occur.

6.3 Zeeman Term of an Orbital-singlet Ground State

Let us see what happens if the lowest-lying crystal-field level with
an unpaired electron is an orbital singlet, in other words, if the unpaired
electron is in an orbitally nondegenerate orbital. In the presence of the
crystal field, we know that a single level corresponds to a real (or imag-
inary, but never complex) wavefunction

L
7y (Yﬂ’m : Y[,’_m) = |4mt>, (6.2)

or, afange 0 to

Yo = |i0>. (6.3)

The expectation value of the Zeeman Hamiltonian

over the ground-state wavefunction is given, for B = B,,B, = B, = 0, by
» By y )
<fmt+, mslf?/'llmi, mg> = upB<4imt, msliz + 2§Z|£mi, mg >. (6.4)

Since L, commutes with the spin part Ims> and §z with the angular
part|fm+>, we may write

< mt; msliz + 2§Z|Emi, mg> = <f mtlizlﬂmi>

+ Z<ms|§zlms>. (6.5)
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First we notice that

<Admi|L,im+> = < fm*/m|fms> (6.6)
since

o TR TR e S ) (6.7)
Because |[fm+> and [fm-> are orthogonal, we find

<fm[L,|fm+> = 0, (6.8)

with the meaning that an orbital singlet has no angular momentum. Solution
of the spin part is straightforward:

<mS|SZ|mS> = mg, (6.9)

and the values of the Zeeman Hamiltonian reduce to the already well-known
energies of Eqs. 2.3 and 2.4.

6.4 Orbital Admixture: Perturbed Ground State

To account for departures of the g values from the free-electron
one, we must consider admixture of excited states |n> into the ground
state |0>. Admixture occurs through spin-orbit coupling to a degree de-
termined by the crystal-field splitting. This is the only way an unpaired
electron in the ground state may acquire some orbital angular momentum
and is represented by the term >

A

Fys = AL " 8. (5.55)

Strictly, A is the expectation value of the spin-orbit coupling operator ’)\\(r),*
but since this operator is averaged over the radial part of the wavefunction,
which is common to all states of the same principal quantum number n and
the same angular quantum number /, it is a constant for all electrons of the
same / manifold and may be written as a scalar in Eq. 5.55. Therefore,
the treatment that follows should be applied in cases in which the unpaired
electron is localized completely in the central atom. Introduction of cova-
lency through wavefunction overlapping may be handled in a similar way,
but by using a molecular rather than an atomic orbital, in which case the
spin-orbit coupling parameter loses its identity of a parameter character-
izing the central atom alone.

ey 2|12yl
A(T) = | [
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Perturbation theory gives, for the perturbed wavefunction that we

call |+ >, the expression

A<n|L - §|o>

= = sl et .10

|[+> = [0> z E, - E, In>, (6.10)
n

which is a good approximation, prov1ded A is much smaller than E, - E,.

For computation, the operator L S may be put in the more useful form

(L,S_+L._S,).

L'S:LZSZ

(6.11)

=

The physical interpretation of Eq. 6.11 is interesting. izgz will mix excited
states of the spin of the ground state, while the ladder operators will mix
|0a> with [np >and |0p> with |na>. When the perturbation of Eq. 6.10 is
applied to |0a> and |08 > it is found, by using Eq. 6.11, that

<n|L,|0> <n|Ly]0>
= ol B =10 RAR S 1
|+> = oa>-1 XZ o E, [na>- 1 ., [ng>  (6.12)
10}
and
<n|L, o> <n|L_]0>
[-> = [oB>+1x ——Inﬁ> %xzi—— [na>.  (6.13)
n i
We now define effective -spin operators such that
S [+> = l+>; (6.14)
Szl-> = -3|->; §Bils)
Sil+> = 0; (6.16)
S_+> = |->; (6.17)
S+[-> = |+>; (6.18)
Sl = (6.19)

Notice the.lt |[+> and |-> are no longer eigenfunctions of the true spin operator
Sz for which no different symbol is used.




In general, the effective-spin Hamiltonian we want to solve will have
nondiagonal elements in an arbitrary frame, i.e.,

Bxx Bxy B8xz

~

H = HBS ‘| 8&xy 8yy B8yz|- B, (6.20)

8xz B8yz 8zz

and for B = Bz’ Bx = By = 0, we may write
s PBB(gzx x+gzysy+gzzsz)’ (6.21)
— ~
since B and S commute and gij = &ji- We have now to find expressions for

§x and §y. They may be put in the form

8, = 1(8,:+8.) (6.22)
and
8y = -(i/2)8+-8.), (6.23)

which, by using Eqgs. 6.16 to 6.19, lead to

S,l+> = 3|-> (6.24)
8yl+> = (1/2)]->; (6.25)
Sxl-> = 3l+>; : (6.26)
§y|-> = ~(i/2)]+>. (6.27)

Operation on |+> and |—> by Eq. 6.21 results in the following 2 x 2 matrix:

[+> [->
1 1 :
ar | 2t pBgzz EHBB(gzx "1gzy)
(6.28)
<= | %:U'BB(gzx it lgzy) _%H'BBgZZ

On the other hand, if we solve for the true Zeeman Hamiltonian of Eq. 5.52,
we obtain the 2 x 2 matrix

CHlEe kab b | <aT, 4+ 28,.]->
LBB| . 5 = A : (6.29)
Sl o al e el s 28]->
z z z z

el
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The matrices of Eqs. 6.28 and 6.29 are just two different expressions of
the same physical phenomenon and must therefore be identical, which can

only be true if

8pp = 2<HL, + 284> = -2<-|L, + 25>, (6.30)

8zx t1gzy = 2<‘|ALz + Z§Z|+>, (6.31)
and

Eax - iay = -2<#|L, #28.[=5. (6.32)

After direct computation of Eq. 6.30, we obtain

z<o|iz|n><n|izlo>

=2 - 6885
8zz = 2 - 2X : B (6.33)
From Eqgs. 6.31 and 6.32, the off-diagonal matrix elements become
<orLlln><n|LJ|o>
fcr <2y - zxz —= (6.34)

The physical meaning of these equationsisnot immediately obvious; in the
next section, we are going to try to find such a meaning.

6.5 Physical Meaning of Admixture

Equation 6.32 will now be solved for a d° ion in square planar
configuration, such as Cu2+, whose crystal-field splitting is illustrated in
Fig. 21. Since the square planar configuration has axial symmetry, we may
write

<x? - YLl xy> <xy|L,x? - y2>
B = 2-2x = Z (6.35)

Exy - EXZ- YZ

and, for example,

e y2|Lx]xz, yz>< xz, szLXIx2 = y2>
g, =2-2\ E B . (6.36)
(xz,yz) - *x*-y?

which readily lead to

- A
g“ =2 - BA_” (637)
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and

g, =2-2 —, (6.38)

known as Polder's relations. For simplicity of notation, we have written

A” EX}' - Exz_Y2; AJ_ = E(XZ,YZ) = Exz_yz- (639)

The choice of excited states in Egs. 6.35 and 6.36 may be done on the basis
of group theoretical considerations, as follows.

Eq
Tag o (xz,y2)
/ N B
/ 2
/ \ 9 5
/
//
G
/ 10Dq 8,
\ :
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Table III shows the character table and representation bases of the
Dyj, group, which is the point group of the square planar configuration.

TABLE III. Character Table of the Dy, Point Group

IR EE G N C NG PG 25, Ceoy 2., 204 Bases

Ag |1 1 1 1 1 1 1 1 1 1 X%+ y2, 22
Ay |1 1 I s -1 1 1 LSzl 1 -1 9

B ARl 1 1 -1 17 =1 1 1 -1 %% —iyE
Bag |1 -1 1 -l 1 11 I =l 1 xy
B () 5 0 0 RO O 0 0 (Ly, Ly) | (xz, y2)
A |1 1 1 1 T S e B S e |

Sl 1 1 -1 1 0 S [ 1 1 z

I= 1y o e M 1 1 -1 -1 1 -1 -1 1

Ba ||L sl Lissgm] SRR | 1 -1 T

Eur|e2 Q=2 0 O A R 0 | (x,y)
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If admixture of state |n> is to take place, the expectation value
<n|L;|0> (6.40)

cannot be zero. Remembering Eq. 3.8, we may write as a general

requirement

BE e = T, =8 (6.41)

We immediately find that ALZ must connect the ground state (Blg) with Bzg,
which is spanned by dxy, since L spans Azg and

Byg X Agg X Byg = Agg. (6.42)

g
Analogously, for f-’x' which, together with i’y' spans Eg, the connected state
is Eg(xz, yz), since

Ay €Egx Eg x Byg = Ag + Agg + Byg + Byg. (6.43)

g
The group theoretical argument avoids trying all combinations for each L;
to select that or those that do not vanish.

Now we are going to derive Polder's Eq. 6.37 without resorting to
perturbation theory. Although less general, this procedure carries an
immediate physical meaning by clearly showing the process by which the
ground state acquires some orbital angular momentum. As we have seen
before, the crystal field, in the absence of a magnetic field, imposes for the
ground state the use of the real wavefunction

1
dxz-yz = |y e e \/2_(YZ’2 + Y, -2). (6.44)

Application of a magnetic field changes the situation completely, since its
superposition to the crystal field descends the symmetry of the configuration
by removing all operations that would lead to magnetic degeneracy, as ex-
plained in detail in Appendix A. The symmetry of the experiment will
depend on the orientation of the magnetic field with respect to the crystal-
field reference frame. Figure 22 illustrates the descent of symmetry due

to a magnetic field parallel to z and to y. The intersection groups are

Djh N Conl(z) = Cyn(z); (6.45)

1

D4h N Cuh(x) = Cun(x);
(6.46)

Dgp N Cunly) = Conly).

The fmalysis that follows will be limited to Eq. 6.45, in the understanding
that it may be applied in the same manner to other orientations as well.



e cI-c, Fig. 22

Magnetic Intersection Groups of
Cah®  Conly) Dy, for Selected Orientations
of the Magnetic Field
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-
& C=C,
|
Emhu)

The character table of the intersection group C4h(z) is displayed
in Table IV. In most applications, it suffices to use real bases for group
representation. But in magnetic problems, it is important to use the
complex bases if any orbital angular momentum is to be considered. Since
the planes of symmetry containing the fourfold axis and the twofold axes
perpendicular to it are removed by the magnetic field, it is no longer re-
quired that one shall take

-y «Ya+ Yo, (6.47)
for the ground state but rather any energetically favorable combination
Y= a¥,, +bY¥Y, 5, (6.48)

where a? + b? = 1. The expectation value of' the orbital angular momentum
of the wavefunction defined in Eq. 6.48 is no longer zero but

<L, lp> = 2(a%-1b?), (6.49)

which produces a shift in the g value to be calculated in the following
paragraphs.

TABLE IV. Character Table of the Cy4), Point Group

Eak BE S e G i s3 h 5, Bases
Ay 1 1 1 1 1 1 1 1 e x% + y?, z?
Bg Ta 1 -1 1 =l 1 -1 (x +iy)?, (x -iy)?
= 1 Tl -i 1 i S Ly, z(x +iy)

g LA -1 i i S -1 i T 2(x - iy)
Ay 1 1 1 1 -1 -1 11 S z
B Iy el 1 -1 -1 1 =il 1
E, 1 R A -i Slbie 1 i | x+iy

1 -i -1 i -1 i 1 -i x - iy

In the E representations, +i stands for eiim(b (m=1, ¢ =7T/Z).
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After the degeneracy of Y, ; and Y, _, is removed, the Y, -, state
will be energetically favored, and the system will spontaneously evolve to
introduce as much additional Y, -, admixture into the new, magnetically
perturbed ground state as permitted by the strength of the crystal field.
The additional Y, _, has to be taken from Bag to which the excess Y, . must
be returned. Thus the appearance of angular momentum in the ground state
is compensated by the appearance of angular momentum of the opposite
sign in the excited state. It is now possible to imagine that at a certain,
probably very large magnetic field strength B, the electron will be in a
pure Y, _, state, which is equivalent, in the scheme of levels of Fig. 21, to
having transferred one-half electron from Blg to Bzg. The work done by
the magnetic field in changing the magnetic quantum number from my =0
in the absence of a magnetic field to my , which is Amj gy upB,, must be
equal to one-half the crystal-field splitting, since this latter is referred to
one electronic charge; i.e.,

Amy gy upB, = éA”. (6.50)

In the same field B_, the additional decrease of magnetic energy provides
the necessary energy to flip the orbital angular momentum from zero to my,
which is work that must be done by the coupling between spin and orbit. For
Ams = 1 and Amy = my , this work is

-Ag”/“LBBoo = mLX. (6.51)

Eliminating ugB _ between Egs. 6.50 and 6.51, one arrives at, after setting
gL & 1:

miX
A e 5
g Iy (6.52)
which, for my, = -2, gives Polder's relation,
s = A
g =gt Ag” = 2 -8, (6.53)

It is of some interest to calculate the values of the coefficients a and b of
Eq. 6.49 for conventional magnetic fields such as those used in paramagnetic
experiments. For a field of 10 kG and crystal-field splittings in the optical
region (12,500 to 25,000 cm™!), a2 - b? is of the order of 107%, Its absolute
value increases linearly and reaches unity (a = 0, b = 1) for magnetic fields
between 50 and 100 MG, clearly unattainable under normal laboratory condi-
t%onsﬂ That the admixture of excited state is proportional to the magnetic
field does not need to upset us since Ag, which is field-independent, actu-
ally represents the admixture Per unit magnetic field.



Since A is negative for more-than-
half-filled shells (which is the case of
d? ions), Agy, as well as Ag |, is positive
and the Zeeman splitting takes the form
indicated in Fig. 23.

SRS ISEIN AND L S Interpretation of Eq. 6.52 is inter-
esting. For values of the crystal-field
Fig. 23. Influence of Orbital Effects splitting small enough to admix as much
in the Zeeman Splitting excited state as possible, Eq. 6.52 ceases

to be valid. If we assume Russell-Saunders
coupling J = L + S and call g, the electron g value in this system, there
is a value of the crystal-field splitting, A,, such that

mik
gy 200023 = -2 TG, (6.54)

which means that the maximum angular momentum will appear for

mj A
A= Zm—B_—gJ. (6.55)

This condition immediately identifies with the requirement of second-order
perturbation that the spin-orbit coupling coefficient A shall be small as
compared with the crystal-field splitting. Moreover, Eq. 6.55 establishes
the limit of the crystal-field splitting below which Polder's relations are

no longer valid, of order 10\ in absolute value.

7l
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7. HYPERFINE INTERACTIONS

7.1 Hyperfine Splitting: The Quantum Number F

When an unpaired electron is near a nucleus with a magnetic mo-
ment, the energy levels of the electronare usually split into 2I + 1 levels,
where I is the nuclear spin. In such a system, if the magnetic field is
large enough, one assumes that both electronic and nuclear spins are quan-
tized in the external field. However, each one of them experiences a mag-
netic field which results from the external one and the field due to the other.
Since the nuclear transitions would occur at much lower frequency at the
same field (about three orders of magnitude lower), the electronic transi-
tions occur at constant orientation of the nuclei, which is expressed by the
conditions

Amg = 1, Am; = 0. (=)

This is not always true; in some cases, weak lines are observed that cor-
respond to Amg = Amjy = 1 transitions, called satellites. But for our
purpose, we only consider those transitions satisfying conditions 7.1. We
will later see that simultaneously induced nuclear transitions by use of
dual-resonance techniques (ENDOR) constitute a very powerful technique
for the elucidation of ambiguous hyperfine structures.

An interesting effect occurs when the external field becomes smaller.
Independent quantization of S and I and I-S coupling become competitive
processes until the latter becomes
dominant. At B = 0, S-I coupling
imposes the use of a new quantum
number F defined as

WEAK FIELD STRONG FIELD
TS — o

F=8+1 (7.2)

This state of affairs leads to the
zero-field splitting illustrated in
Fig. 24 for a system of S = I = %
Diagrams of this type were intro-
duced by Breit and Rabi and are
available in the literature for vari-
ous values of S and I.

ENERGY

MAGNETIC FIELD We discuss only the strong-
field case, when the I-S coupling can
.be treated as a perturbation and I
and S are good quantum numbers.
Interpretation of spectra at low fields, where S, I, and F transitions may
be observed according to the direction of the microwave magnetic field with
respect to the external one, is difficult and has not received much attention.

Fig. 24. Breit-Rabi Levels for S = I = 1
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In the strong-field case, the hyperfine interaction appears as a
splitting of levels, usually anisotropic. It is represented by a second-rank,
symmetric tensor A. This effect can be decomposed into an isotropic part,
known as a Fermi or contact term, customarily symbolized K, and a trace-
less, second-rank symmetric tensor T knownas a dipole-dipole interaction
tensor. The relation between A, K, and T is then

AR (7.3)
with

el =3 Ti= 0 (7.4)
i

The former is due to unpaired electron density inside the nucleus; the latter
is due to interaction between the nuclear magnetic moment and the spinmag-
netic moment outside the nucleus. We discuss each case separately in the
following sections.

7.2 Interaction between Nuclear and Electronic Spins

Consider Fig. 25, where a nucleus has been represented by a positive
charge q going in a circular path of radius a at constant linear velocity v.
The velocity v is, as we know, related

to the period T by
v = 27Ta-1— (=5
= T .5)
This current loop is equivalent to a
magnetic moment, after solving
Eq. 1.4,

ma? = ‘z" (7.6)

1
e I e

H|.a

normal to the ring, whose direction
is given by the right-handed conven-
tion. In other words, looking at the
loop from the positive end of the
magnetic-field vector inside the loop,
one sees the positive charge circu-
lating counterclockwise. Consider
now the magnetic lines also drawn

in Fig. 25, and imagine that the nu-
cleus is imbedded in an electron cloud
with center in the nucleus, of wave-
Fig. 25. Magnetic Field of a Nucleus function ¥(r). Notice that the symbol
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z,l/(—;) is a short symbol for ¥(r,6,9). Consider a volume element dV, outside
the nucleus, of electronic density [#(¥)]” dV. The magnetic field B(r) acting
onthis volume elementis givenby Eq. 1.54 as proportional to (2 cos? 8 - 1)/1‘3.
Its average seen by the electron outside the sphere of radius a (indicated in
Fig. 25 in dotted lines) representing the nuclear volume is given by the ex-

pectation value

00

<B>1.a f Y*(x)B(r)Y(r) AV, 2.7)

a

where integration over the nuclear sphere has been excluded. Inside the
sphere, we have, on the other hand,

<B>r<a :/ w*(?)B(_;)?//(;)) dav. (7.8)

Two cases have now to be considered: s and non s electrons.

For s electrons: Due to spherical symmetry, the average of Eq. 7.7
is zero, while the average of Eq. 7.8 is not, as seen in Fig. 25, where the
magnetic lines all point up inside the nucleus. Since an s electron has a
finite electronic density inside the nucleus, there is magnetic coupling inde-
pendent of the orientation. This is the Fermi or contact interaction, to be
studied in Section 7.3.

For non s electrons: Since a non s electron has no electronic den-
sity inside the nucleus, Eq. 7.8 is zero. On the other hand, the symmetry of
a single non s electron is not necessarily spherical, and Eq. 7.7 has to be
calculated in each particular case.

In many-electron systems such as p>, d°, and £’ high- spin configura-
tions, the angular momentum cancels out and the ground states, *S, s, and
gs) respectively, have spherical symmetry. The electronic density at the
nucleus remains, however, zero (aside from polarization of the core), be-
cause the electrons are not s. Thus, as long as one does not consider spin
polarization of inner s shells, both Eqs. 7.7 and 7.8 should cancel out for
S states. This extreme case is never observed, because spin polarization
of the inner s shells always introduces magnetically uncompensated elec-
tronic densities inside the nucleus, which results in a finite <B>. , arising
from the difference between states of spin up and spin down. This situation
is considered in detail in Section 7.5 on core polarization.

The ) Contact Term of s Electrons

The magnetic energy of an s electron due to coupling with a nucleus
of magnetic moment Mpuc 18, according to what we already know, given by
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E = BeUp<B> ca (7.9)

To solve Eq. 7.9, we have to evaluate <B>, 5, which is given by Eq. 7.8.

We assume that within the sphere of radius a the value of the magnetic

field may be taken as the value at the center of the loop, By, and that the

value of ¥(r) for r < a is constant and equal to ¥(0). We may then write
5y

<{B>r<a :f Bo|?//(0)lz diVia= Bo|¢(0)|zf dv = Bo|¢(0)|2 (T)a3, (7.10)

0 0

a

since dV = r?

gration gives

Vn 2T 1 a 4T
f dav = f f / r? dr sin 6 d6 d¢p = T""B' (e
0 0 0 0

Actual departures from these assumptions lead to higher-order isotopic
effects called hyperfine anomalies, which arise from the fact that two iso-
topes may have different current distributions, in which case they will ex-
hibit coupling energies that are not simply in the ratio of their nuclear
moments.

sin 6 dr d6 d¢ in spherical polar coordinates, and the inte-

In the representation of the nucleus by a ring current, the value of
a has to be chosen to fit the expression given in Eq. 7.6; i.e.,

qav
lSnvich s e £

where (L, is the nuclear magnetic moment, which is normal to the loop,
while the magnetic field at the center of the loop is in turn given by

v
By Q_Z, (7212
ca

which is obtained from Eq. 1.5 after making v = Z’TTa/T and i = q/T. Com-
parison of Eqs. 7.6 and 7.12 leads to

2ec

Bo = —5 Hnuc: (7.13)
a
Elimination of By, between Eqgs. 7.10 and 7.13 leads to
8m 2
<B>r.a = S HnucWON (7.14)
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and Eq. 7.9 becomes

8m 2

= 5 8ehp * Hngc VO (7.15)

E

Expressed in terms of spin vector operators, Eq. 7.15 takes the general
form

~ A

8 AR
KS ~ I = Tge”BgN'uNs e GlGe)) (7.16)

where |1y is the nuclear magneton, g the nuclear g factor, their product
being equal to [pycr and 6(r) is Dirac's delta function.

In general,
S e (7.17)

Because of the symmetry of the system and because theALAarmorApl:\ecession
frequencies of nucleus and electron are very different, SyIy and Syly cancel
out in the strong-field case, where nucleus and electron are assumed to be
independently quantized in the external field. Equation 7.16 then takes the

form

~ ~

81 Opsiia
ESE= 3_ge/J'BgN/“LN|W(O)| S, L (7.18)

and the eigenvalues are

8m 2
B = B geMBgNHNW(ON mgmy. (7.19)

That SyIy and Sny cancel out in the strong-field case can also be proved by
setting

A~

B-I-E8.1L +161 15 1) (7.20)

We now operate on the state |msm1> with the Hamiltonian of Eq. 7.16 and
find

< mSmIISZIZI mgm; >

mgmy (722l

and
<msml|§+i_|msm1> = <msm1[§_’i+|msm1> = .0, (7.22)

arriving, again, at the eigenvalues of Eq.atal9
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Values of the contact term for full localization are given in Table B.I
for atoms helium to bismuth as calculated by Hartree-Fock (H-F) theory. The
value for hydrogen, which is by far more accurate, because the hydrogen
atom is a two-body system and can be exactly solved, compares extremely
well with the experimental one. In the other cases, especially in the heavier
atoms, the H-F values cannot be expected to be better than within 20-30% of
the experimental values as obtained by atomic-beam studies.

7.4 Dipole- Dipole Interaction

The dipole-dipole interaction term Siese may be written in the
form

s A a 3(8-9)(d- §.1
S-T~I=geuBgNuN{( L 3}. (7.23)

In the strong-field approximation, S and I are supposed to be quantized in
the applied magnetic field.

The principal values of the T tensor are given by

3 5in%? 6 cos® ¢ - 1

Tyx = Bl BENHN /‘1//* . y dv, (7.24)
3lsin% 6lsinc ¢ -1

Tyy = geuBngNf ¥ = ¥ av, (7.25)

»

and

2
R et B S (7.26)

T

Tzz = BeMBENMN /T//*

where 1 is the electron wavefunction. The integration has to be performed
over the range of r, 6, and ¢. Since in spherical polar coordinates the vari-
ables of an atomic wavefunction are separable, Eqs. 7.24-7.26 are readily
solved. The radial part separates in all three to give

-3y - = *(r) « R(r) - (r3)r? dr, .2
<r>foR()R()()d (7.27)

whose value is found in Hartree-Fock tables. The angular part is given by
the spherical harmonics of Eq. 3.12. After integration of the radial part,
Eqs. 7.24-7.26 become

2T i
- 2 s .
Tyx = BeMBENUNST > '/‘; j; [%(8, ¢)| (3 sin® 6 cos® ¢- 1) sin 6 d6 d¢,
(7.28)
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RNt i
Log EeMBENEN ST > f f I¢(6,¢)|2(3 sin? 6 sin® ¢ - 1) sin 6 dO d¢,
LS (7.29)

and

2T vig
e
= 53 2g- i 5 7.3
T,, = EpENEN<T >fo folzp(e. #)['(3 cos? 0-1) sin 6 dp dp.  (7.30)

After substitution of
cos 6 = z, sin @ df = -dz, (T#81)

the integrals

.
s (7.32)

t.. =TT
M BeHpBNHN <>

which are now functions of the polar and azimuthal coordinates only, are
easily reduced to

tyx = 3A - 3B - 1, (E23)
tyy = 2 - 3A + 3B - 3C, (7.34)
and
e = 5G]y (7-85)
with
2710
A = f f ¥? cos? ¢ dz do, (7.36)
0 -1
2T Pl
5= 252 2
/ f Y°z® cos® ¢ dz d¢, (7.37)
0 -1
and

210 1
C = f f V2% dz do. (7.38)
0 =]

The traceless character of the T tensor is clearly shown in Eqs. 7.33-7.35.

The values of ty,, tyy» and t,, for each p and d orbital are given in
Table B.II



7.5 Core Polarization

As we anticipated in the last paragraph of Section 7.2, in spherically
symmetric states such as (p?, *S), (d° °S), and (f', ®S) the dipole-dipole inter-
action cancels out and, since the electrons are not in s states, the contact
term should vanish as well. A typical case would be **Mn?" in high- spin con-
figuration, with five d electrons in S ground state. Natural manganese is
100% *Mn of I = 5/2. If what we said were strictly true and we had not
overlooked any other effect, the spectrum of *Mn?" in the ®S ground state
should exhibit only one transition at the free-electron g value, without hy-
perfine structure. The spectrum of Mn??t, however, consists of six equally
spaced lines spread over some 400 G, practically independent of the nature
of the compound, provided, of course, that the sample be magnetically di-
luted. At one time, it was thought that the hyperfine splitting was due to
some s character admixed by configuration interaction. It was difficult,
however, to explain why the admixture was practically independent of the
crystal field. It was then found that the appearance of a contact term was
not due to admixture of some excited s states but to differential polariza-
tion of the inner s shells, produced by the unpaired spins of the d electrons.
Such an effect, involving inner shells which are insensitive to the crystal
field, should be independent of the compound as long as the localization of
the d electrons did not change. This type of polarization of the core is of
course not restricted to Mn®' and is present in all paramagnetic ions. The
theoretical basis of the effect lies in exchange and has no classical analog.
We are quickly going to review the situation.

In conventional Hartree-Fock theory, the polarization of the spin
wavefunction is not considered. The radialwavefunctions do not depend on
the spin quantum number, and the net electronic spin at the nucleus cancels
out for all filled s shells. As soon as such a restriction is lifted, by devel-
oping a spin-polarized Hartree-Fock theory (SPHF), the radial wavefunctions
are slightly modified due to exchange, according to whether the inner spins
are parallel or antiparallel to the outer-shell unpaired electrons. As a con-
sequence, the electronic density at the nucleus of the same ns orbital is dif-
ferent for mg = +1 (spin "up") and for mg = -1 (spin "down"), resulting in
a net magnetic polarization of the electronic density given by

[w(o)]* - g0 . (7.39)

The effect of exchange actually consists in the appearance of opposite polar-
ization at the nucleus. Exchange forces generally separate the ns electron of
the same spin away from the nucleus, thus decreasing the density of equal
spin. Since the sign of the exchange force is determined by the relative posi-
tion of the nodes of the interacting wavefunctions, it is found that, although
the net polarization is opposed to the outer spin, the effect changes sign for
different ns shells. It is somewhat surprising that SPHF theory predicts
values in good agreement with experimental results, since the differences of
Eq. 7.39 are small when compared with the values of |7,1/(0)|Z and HF parame-
ters are not better than within 20% of experimental findings. However, this
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agreement is no longer surprising if one considers that the HF errors are
likely to be systematic; the relative error is therefore propagated to the
difference without significant change. An analysis of the literature involving
nearly 100 compounds gives the results displayed in Table V.

TABLE V. Summary of Experimental Values
of Core Polarization of Several Transition Ions
as Compared with Theoretical Estimates

Ion Xexp’ a.u. X SPHF" a-u.
Ag2+ in frozen acid solutions il 0! 9a
Agz+ in organic ligands 10.8
Mo®t in mixed oxohalides 9.23 8‘7b
Nb*t in alkyl oxohalides 6.84 s
Cu?" collective treatment 4.89 3.75d
VvO?t collective treatment 3.84 3e

1iExt‘(_rapola.ted from Y2T.P&* series.
Mo™'.
Cn3t
N0
%y % fom.
€3d" ion.

The theory predicts a magnetic field at the nucleus due to core polar-
ization per unpaired electron

S3sioss K
CpPMEEES FIETE (7.40)

for mg = +3, of -125, -375, and -700 kG for 3d, 4d, and 5d ions, respec-
tively, practically independent of the nature and charge of the ion within each
series. The contact term K is given by

T : :
= 3 EeHpBNHN [Yns (O - |y g(0)4°p. (7.41)
n
The value X (in a.u.) used in Table V is the parameter calculated by SPHF
theory
; P(r)|? P(r)|?
Z lim L) 2 ﬁ o (binz i) (7.42)
r—0 it A
n ns ns
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The polarization of the core is then expressed as

e 20 (7.43)
n

The magnetic field is obtained by the conversion factor 41.2 kG/a.u.

7.6 Orbital Contribution to the Hyperfine Interaction

The complete Hamiltonian of hyperfine interaction is obtained by
summing Eqs. 5.54 and 5.56:

ililr e R e Rk
FHps = KS - I+ 2upenuy = SRE S R

(7.44)

A An inspection of this Hamiltonian
£<‘///\i m immediately reveals a striking dif-
bi\) Sy Bt °_‘\‘>5—‘> ference between the dipole-dipole
Bn terms involving S and L. For cer-
tain orientations of the magnetic
field, the electron spin term may
vanish or reverse sign, while the
Byt g electron orbital term does not. This
is due to the permanent character of
the spin magnetic dipole, as opposed
to the electromagnetic character of
the orbital one that may be thought of
as the magnetic field at the nucleus
due to the electron current. Whilein
the former case to each volume ele-

Fig. 26. Magnetic Field at the Nucleus due to ment there corresponds an infinites-
Polarization of the Spin and Orbital imal magnetic moment, in the latter
Momenta for Two Orientations of the case to each volume element there

External Field corresponds an infinitesimal current.

Figure 26 illustrates the two behav-
iors, showing how the magnetic field at the nucleus (B,) due to spin and or-
bital moments changes with the orientation of the applied external field. The
choice of the electron state is arbitrary and need not be labeled, provided, of
course, it is not spherically symmetric.

Gathering the two anisotropic interactions into the same tensor term
leads to

N (7.45)

2L BENMN

T e -
5 + <

it

where T is no longer traceless because of the orbital contribution.
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The Hamiltonian of Eq. 7.45 has to be solved by perturbation theory
for each electronic configuration, following the line of argument used for the
g tensor. For a d? configuration in square planar coordination, for example,

one obtains
t, = Ogyt (3/7)0g, - 4/7 (7.46)
and

F

bg, - (3/14)0g, +2/7, (7.47)

where Agl and Agl are related to the spin-orbit coupling coefficient and the
crystal-field splittings by Polder's relation Eqs. 6.37 and 6.38. When Ag” =
Agl = 0, one obtains the principal values

Bl AT sy 27T (7.48)

of the traceless tensor for d ., .,, as shown in Table B.II. Equations 7.46
and 7.47 are particularly important in the determination of the contact term.
In the absence of orbital effects, K is given by

K =+TrA, (7.49)

since A = K+ T and T is traceless. When orbital effects are present, they
contribute to the isotropic component of the hyperfine tensor A. The trace
of A is then

TrA = 3K + (g, +28g)9 (7.50)

where

Q = 2ugenkN<T> (7.51)
and, in general,

K = 2TrA - <0g>Q. (7.52)

To avoid false assignments, it is particularly important to consider signs in
Eq. 7.52. For example, if K is due to core polarization, it has to be taken
as negative, while, in d’ configurations, <Ag> is positive. The sign of TrA
in these configurations is usually negative, so that overlooking of orbital
effects leads to absolute values of K smaller than the actual ones. In many
cases, however, the orbital correction may be neglected in first approxima-
tion, especially in free radicals where the spin-orbit coupling is small and
the separation of the excited states large.
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7.7 Electron Localization and Chemical Bond

The degree of covalency is related to the overlapping of the central-
ion and ligand AO's. This overlapping results in a delocalization of the un-
paired electron that determines: (1) a smaller splitting due to hyperfine
interaction with the central nucleus, and (2) the appearance of superhyperfine
structure due to interaction with the ligand nuclei.

In the MO approach, the electron wavefunction is represented by a
linear combination of the central-ion AO %, and the ligand orbital ¥1,. In
transition ions, the unpaired electron usually occupies an antibonding orbital
given by

¥ = afp - by, (7.53)
where
S = Dol e ] (7.54)

<0|L> being the overlap integral. If a is not close to unity, Polder's and
similar relations do not hold. However, agreement between theory and ex-
periment may be partially restored if one uses the wavefunction of Eq. 7.53
in the perturbation treatment of Section 6.4. If the ligands contain light
atoms such as O and N, their spin-orbit coupling contribution, which is of
the order of 100 cm™ for total localization, may be neglected and, if one fur-
ther assumes a? = 1 for the excited states, Polder-type relations must be
multiplied by a®. In particular, Polder's relations become

»

azxo
=2 -8 — T35
g T e
and
£ G 7.56
By & P 2 s (7.56)

If the splittings are known from optical data, the determination of a’ is pos-
sible. On the other hand, if one compares the experimental principal values
of the T tensor with the theoretical ones, listed in Table B.I, their ratio is

also a2, R

. (exp)
i 2, (7.57)
T“(th)

after correction for orbital effects, if necessary. This procedure, although
only approximate, leads to reasonable internal consistency. The field, how-
ever, is just beginning, and much theoretical and experimental work lies
ahead.



Numerous workers have explored the field of organic free radicals,
and current methods for dealing with organic configurations are extensively

treated in the literature.

PROTONS SPIN
FUNCTIONS

ZEREERL o i g 75 Hypf:rfine Inte racjtion with
Equivalent Nuclei
g laa B>
a {:;‘;:: When several ligand molecules
{:"B’;g; are equivalent, such as four pyridine
18Ba> rings in square planar configuration, or
\BBB> when several equivalent atoms share
the density of the unpaired electron, as,
for example, in the case of the methyl
20 radical CH;, the magnetic levels are
further split by multiple interaction.
The latter case is illustrated inFig. 27.
e e All protons being equivalent, the total
{'Igf;: number of levels is given by N + 1,
laB B> since I = %, where N is the number of
o ‘ {:f;:i protons. The population of the levelsis
ey determined by the number of micro-
laaa> states; thereby the intensity ratio,
1:3:3:1, is given by the coefficients of
My [#8sorPTION  Newton's binomial. In general, for an
MAGNETIC FIELD arbitrary number N of equivalent nu-
clei of spin I, the hyperfine multiplicity
Fig. 27. Hyperfine Splitting of Methyl Radical is given by Z(I TN R

7.9 Hyperfine Interaction in Liquids

The spin Hamiltonian studied so far applies to magnetic units that are
"at rest" with respect to the static magnetic field, namely, when the motions
are slow when compared with the microwave frequency, or when the ampli-
tude of the vibrations is very small, thus involving a very small uncertainty
in the orientation. This is the case for most solids and frozen solutions, and
the situation usually improves at lower temperatures. Resonance in low-
viscosity liquids, on the other hand, poses a very different problem. The
paramagnetic units are tumbling with frequencies larger than the microwave
frequency, and the spectra are very different. In this case, only the trace of
the magnetic tensors is observed and the spectrum is isotropic. The situ-
ation is different from the usually broad isotropic spectra observed in solids
and glasses where all orientations contribute to the resonance.

. To develop a mathematical theory of the spectra in liquids, we are
going to consider the hyperfine term

AR SO (7258)
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The treatment that follows applies to all second-rank, symmetric
tensors and therefore covers the g and the crystal-field tensors as well.

In the liquid, A is a function of time in the laboratory reference
frame, for each paramagnetic unit. If A, is the tensor at time t = 0, the
expression of A at time t is given by

Aft) = Ry - &, - R(e), (7.59)
where ﬁ(t) is a real orthogonal matrix. Of course,

R(0) = E, (7.60)
where E is the identity matrix.

The elements of the matrix R(t) are time- dependent direction co-
sines b, £z, ..., m3, n3; i.e.,

Li(t)  La(t)  As(t)
R(t) = | my(t) my(t) my(t) |, (7.61)

n(t)  np(t) ns(t)

and R7!(t) is obtained by exchanging rows and columns. The R(t) matrix is
clearly a mathematical description of the motions.

For the purpose of computation, the development of the similarity
transformation of Eq. 7.59 may be put as a matrix multiplication in the six-
dimensional space of the tensor parameters as

Ap f4%  mi nf 2mn; 2n 4y 2/ym, An
Az 43 mj n3 2myn, 2n,0, 2h,m, Az
Al 2 m} n} 2msn, 2n;l; 203m; Aqy (7 62)
Ay | T | £4 mym; mpn;  (mpny+nymy)  (Bnything)  (Bomy+limg) | 0| Ay |C )
Al L3ty mym; ngny  (mny+ngm,)  (bng+imy)  (fymy+amy) Ay
Al Il mym, nn, (mn;+men) (bny+lmy)  (4m; +lm,) Az
We now consider the time average
1 L -
™ f R7(t) - Ay - R(t) at (7.63)
0

for an interval t much larger than the inverse frequency of the motions.
Under this condition, we may safely represent all motions by the same fre-
quency l/T and solve Eq. 7.63 for t >> T after setting

R(t) = R(t + T), (7.64)
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taking the space average of the matrix elements of Eq. 7.62. All odd powers
of the direction cosines average to zero, while the even powers give

B> = CIE> = .= KxB> = 1/3 (7.65)

Equation 7.63 then reduces to

|
Al 1/3 1/3 1/3 Ay
Al 1/3 1/3 _1/3 |8 A
Al 1/3 1/3 1/3} Ags
i = g _/ _____ (=2 i (7.66)
Ajs | Azs
Al 0 | O Agy
Al ! Ay
with the results
3 e
Al = A = A}y = 3TrA;
(7.67)
Ajy = Ay = Afp, = 0.
The spin Hamiltonian of Eq. 7.58 becomes isotropic; i.e.,
il = (%Tr?&)g -1, (7.68)

which is completely general, since TrA is an invariant.

7.10 Electron Nuclear Double Resonance (ENDOR)

ENDOR is an ingenious and elegant method that permits the deter-
mination of the hyperfine structure with a resolution approaching that of nu-
clear magnetic resonance. In explaining the principle of ENDOR, we are
going to consider the simple case of a magnetically dilute paramagnetic
substance with one unpaired electron and the orbital momentum completely
quenched. For simplicity, we assume isotropic hyperfine interaction. The
Hamiltonian, including the Zeeman nuclear term, is then

7 = gugB-8+A8- 1. guB -1 (7.69)
The eigenvalues of the Hamiltonian are
Es = 7gupB + 3 © 3A - dgunBe (7.70)

E; = ZgupB - 3 3A + gnunB (7-71)
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=

E, = -3gHgB + NENB

and

E, = -2gupB - 3 - 1A - fgyuB-

Allowed transitions are those occurring at Ams

transitions) and for Amy

(7.72)

(7.73)

*1and Am; = 0 (electronic

*1 and Amg = 0 (nuclear transitions). Allowed

electronic transitions with absorption of energy are indicated in Fig. 28:

augB-& + 8% = guuBh

L7 Eq
ms = +3 huj,
* =i
S e Es
+ hvg
hst
—
i
E;
m= -z
hv;‘
m = 4%
E

Fig. 28. Typical Scheme of ENDOR Transitions

A = gugh B,

1) E; to E4, by absorption of
( 1 4 DY P
a photon of energy,

hvgt = E4 - Ep; (7.74)

and

(2) E; to E;, by absorption of
a photon of energy,

hvs_ = E; - E,. (Tt 5)

The energy difference between both

transitions is the hyperfine constant

A, which is then given by

+

=)

> (7.76)

»
When the transitions occur at con-
stant frequency and varying mag-
netic field, it is easily found that

(2sd)

where AB is the separation of the hyperfine doublet in units of magnetic

field.

There is an important fact that limits the resolution in the deter-

mination of A by EPR: the width of the

absorption lines that may not only

distort but even hide any hyperfine structure due to overlapping. The re-

solution may be improved by performing an ENDOR experiment.

Evenmore

important, the nucleus responsible for the interaction may be unambiguously
identified and its magnetic moment measured without knowledge of the elec-
tron wavefunction, with the sensitivity of EPR.

Electrons raised to the upper levels by absorption of microwave

power return to the lower levels by spin-lattice interaction.

crowave power is fed into the sample at

If enough mi-
constant magnetic field for the
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resonance of one of the transitions, the rate at which the electronsare raised
becomes comparable to the rate at which they relax and saturation occurs.
Both levels become equally populated, and power absorption stops. If a radio
frequency, vy, variable in the range of nuclear resonance, is now app¥1f=.d to
the sample, it is possible to remove the saturation, provided the conditions
for nuclear resonance are fulfilled. Consider, for example, saturation of the
E; — E,4 transition. Due to saturation, the population N4 will becor.n.e egual to
N;, and therefore larger than Nj if the sample was in thermal equilibrium.
Nuclear resonance will occur at

VN+ = (Eq - Es)/h. (7.78)
and the population N4 will decrease by stimulated nuclear transitions from
E, to Ej; saturation will then be removed, and the EPR signal will again
appear. The same process, although involving the other levels, will take
place at the frequency

vy = (Ez - E;)/h. (7.79)
From Eqgs. 7.70-7.73, 7.78, and 7.79, one arrives at
+ =
A = h(vy tvy) (7.80)

and

h +
ENMN = Z—B(vN —Unri)- (7.81)

ENDOR experiments are not usually simple. One has to have a system with
the correct relaxation times, work at low temperature, and have an EPR
equipment permitting the experiment. In addition, the necessary radio-
frequency unit, a separate coil around the sample to provide the radio-
frequency field, and the need not to interfere with the basic EPR electronics
do not simplify the situation. The dividends are high, however, and often
justify the work.



8. CRYSTAL-FIELD TERMS

8.1 Crystal-field Splitting in Systems of S = 1

When there are two or more unpaired electrons in the paramagnetic
center, it is necessary to include a term in the complete Hamiltonian in or-
der to account for electron spin-electron spin interaction. Two or more
unpaired electrons are coupled through crystal-field operators that reflect
the local symmetry, giving rise to zero-field splittings and to a strong
anisotropy in the spectrum. One may start by writing a so-called fine
structure Hamiltonian

His =8 -0 -8, (8.1)

where & is a tensor representing the crystal field. In cubic symmetry, 3
reduces to a scalar, to the second order in S, and produces a shift of the
levels with no influence in the magnetic transitions. This term essentially
accounts for the lattice energy and is important in other fields. As soon as
the symmetry is descended, effects to the second order in S are no longer
isotropic and result in splittings that change with the orientation of the
magnetic field. The order of magnitude of this interaction is 10° cm™!,
probably varying one order of magnitude above and below, and is clearly of
the order of the Zeeman interaction. As a consequence, the absorption
lines often make incursions over the entire region of the magnetic field.
Table VI illustrates the orders of magnitude of various effects related to
EPR.

TABLE VI. Spectrum of Energy of Various Atomic and Nuclear Interactions

L}\ = %, cm™! Spectral Region Phenomenon

5
ig4 Vigi\tile Crystal-field splitting of electronic levels.
10° =1 Vibrations.
10° Rotations.

1
180 Mi Zeeman effects for magnetic fields =10 kG,
10-1 EAAL crystal-field terms in S® (fine structure).
107¢ Hyperfine interactions.
10 Radiofrequencies Nuclear Zeeman effects for fields =10 kG.
05 Nuclear-quadrupole effects.

Equation 8.1 may be put in operational form, easy for computation,
after some minor algebraic handling. First, we write Eq. 8.1 in diagonal
form, remembering what we know about second-rank tensors:

925
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@) O 5
§-8.8=(68,8,- |0 @ 0 |- |8 | =S+ &Sy + &5 (8.2)
Of . A0 o

The conditions satisfied by the principal values are, as we already know:

I

Cubic symmetry: & = & = &3 = &;
Axial symmetry: @ = @, = &; &; = O;

Lower symmetry: &, i
In cubic symmetry, Eq. 8.2 simplifies to

§- 0.8 = o(8%+85+5%) = 95% = os(S+1), (8.3)

and the term accounts for an even displacement of all levels. Therefore,

a cubic field does not remove, to the second order in S, the spin degeneracy.

We proceed now to solve the totally asymmetric case of which the
axial case will be a particular solution. First we write

®,8% + 5% = 3@ +0,)(8%+8%) + 3(® - 0,) (% - 55) (8.4)

and define the parameters

"

E = 3(9,-9,) (8.5)
and

D

0, - (0 +D,). (8.6)

The reason for this apparently arbitrary choice is the separation of the
crystal-field effect into a cubic, an axial, and an orthorhombic component
that facilitates the interpretation.

To simplify the Hamiltonian, we may subtract the average crystal-

field energy which only displaces all levels alike. This term may be
written

@+, +05) S(S+1). (8.7)

In terms of Eq. 8.6, Eq. 8.7 may now be written

[ip+ i@ +e)] s(s+1) ' (8.8)

and subtracted from Eq. 8.2. After some algebraic handling, one arrives

at a simplified expression of the anisotropic contribution to the fine-
structure Hamiltonian
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D[8% -4s(s+1)] + E(S%-82), (8.9)

which is the well-known expression of the crystal-field term widely used
in the specialized literature.

For axial symmetry, the D term directly gives the zero-field
splitting, since it does not contain the magnetic field. For example, for
S = 1, the levels correspondmg to mg = 0 and mg = #1 are separated, in
zero field, by D(12-02) = D. The orthorhombic parameter E is usually
one order of magnitude below the axial D.

In cubic symmetries, especially when dealing with 25+1g ions, it is
necessary to add a higher-order term,

$2a(85+S%+8%), (8.10)
which results in minor corrections.

8.2 The Crystal-field Potential

The potential of the crystal field in the immediate neighborhood of
a paramagnetic ion is calculated in the crystal-field approach in the region
just inside the ligand charges or dipoles. In this region, the electric field
satisfies the condition

divE = 0, (8.11)
which, remembering Eq. 1.7, may be written as

div E = -div grad V = - V%V, (8.12)
from which it follows that

W = (1 (8.13)

This is known as Laplace's equation. Its solution in spherical polar co-
ordinates of interest in crystal field is

Z Z EAnmrnYn,m(Gk@k)' (8.14)

n ms=n

where the summation k is over all electrons. The normalized spherical
harmonics Yn m are those of Eq. 3.12 with a phase factor (-1)™ instead of
(-1)(m+Iml)/2" Because of orthogonality relations, terms with n larger
than 4 vanish in d electrons, and terms with up to n = 6 have to be con-
sidered in f-electron configurations. Tables of the potentia.l functions are
available in the specialized literature.
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Just as for electron wavefunctions, an alternative solution of
Laplace's equation in orthogonal coordinates leads to polynomials of
terms of the type given in Eq. 3.36. An analysis of the crystal field prob-
lem on the basis of polynomials in orthogonal coordinates is perhaps more
intuitive and will be followed here. Calculations are easier in the spherical
polar system, however, if one wishes to determine splitting energies as ob-
tained from small distortions that can be considered perturbations to be
added to the cubic splitting.

The existence of an inversion center or twofold axes that reverse
the coordinates restricts the terms of the crystal field to even powers of
the coordinates. The first, zeroth-order term has spherical symmetry and
displaces all levels alike, corresponding to the term of Eq. 8.7. This term
has no bearing in EPR and may therefore be subtracted from the Hamiltonian
exactly the way we did in Eq. 8.8. The second-degree terms may be written

Grx . NGy rie it (8.15)

In cubic symmetry, C; = C, = Cj, and again we find an isotropic shift of
all levels. The next term to consider is

S s N NG TN S e N e (8.16)
which reduces in cubic symmetry to

At +yt+2%) + A (xPy? + y22% 4+ 2%x2) = (A'- A /2)(x* +yt+2%) + (A,/2)r%,
(8.17)

Anologous arguments in the other symmetries lead to the following second-
degree terms:

Axial symmetry: C,(x*+y?) + C| 2% (8.18)

Lower symmetry: C;x° + C,y? + Cyz?. (8.19)

When f orbitals and F states are studied, sixth-degree polynomials must
be considered.

8.3 Nuclear-quadrupole Interaction

When the spin of the nucleus is equal or larger than one, the nucleus

may have an electric quadrupole Q. It is in this case necessary to add a
term

O] LRl (0] (8.20)

which may in turn be developed, following analogous lines of argument, as



P{f - 310+ 1)} + P -B2). (8.21)

The P term represents axial symmetry and is related to the nuclear elec-
tric quadrupole Q by

3e o'V

where 3%V /3z% is the electric field gradient at the nucleus, along the sym-
metry axis. The P' term accounts for orthorhombic distortion.

The greatest contribution to the field gradient at the nucleus is
usually due to the unpaired electron; the contribution from the ligand mole-
cules (crystal field) is negligible. Some orientations of the nucleus relative
to the unpaired electron spin are then more favorable if the nucleus has a
quadrupole moment so that there can be an electrostatic interaction that
slightly modifies the electronic levels. The quadrupole effect is even in I,
due to the existence of a mirror plane in the quadrupole, perpendicular to
its axis. In this respect, a nuclear quadrupole may be represented by two
negative point charges with a double positive charge midway between, no
change in the configuration being therefore imposed by reflection through
a plane perpendicular to the quadrupole and intersecting its axis in the
middle point.

The order of magnitude of this effect varies between zero and

~10"* cm™!, contributing mainly to broadening of the lines.
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Reprinted from AMERICAN JoURNAL oF PHysics, Vol. 37, No. 8, 793-799, August 1969
Printed in U. S. A.

Symmetry and Properties of Crystals: Theorem of Group Intersection®

J. A. McMiLLAN
Argonne National Laboralory, Argonne, Illinois 60439
(Received 23 January 1969)

Polarized crystals exhibit the symmetry of the intersection of the polarizing-field and the
crystal-point groups, thus imposing conditions on spontaneous polarization. Introduction of
time reversal and charge conjugation in magnetic and electric configurations leads, through
the intersection theorem, to Shubnikov’s groups. Intersection with the symmetry point
groups of second-rank tensor fields imposes conditions on these latter. Tables of group inter-
sections are given and some instructional examples are discussed.

INTRODUCTION

The quality of a crystal of transforming a given
independent variable into a certain dependent
quantity is called a property. It is symbolically
expressed by means of an nth-rank tensor. The
independent variable and the dependent quantity
are in turn expressed by tensors of appropriate
rank. The ranks of the independent-variable and
the dependent-quantity tensors determine the
rank of the property tensor according to

(rank of property tensor)= (rank of inde-
pendent-variable tensor)+ (rank of de-
pendent-quantity tensor).

In the case of property tensors of rank one or
higher, the number of independent coefficients
needed to define the property without ambiguity
is determined by the crystal point symmetry. A
general procedure for finding this number, based
on the theorem of group intersection, is intro-
duced and discussed in this publication as applied
to first- and second-rank tensors. Although the
conclusions arrived at are of course well known,!
the method offers an alternate, group-theoretical
approach to the usual procedure of finding in-
variant tensors under the symmetry operations
of the crystallographic point group.

THEOREM OF GROUP INTERSECTION
Theorem

An experiment in which a crystal of symmetry
point group G is in a uniform tensor field of sym-
melry point group G’ has the symmetry of the inter-

* Based on work performed under the auspices of the
U. 8. Atomic Energy Commission.

! See, for example, S. Bhagavantam, Crystal Symmelry
and Physical Properties (Academic Press Inc., New York,
1966).

section G" of G and G/, i.e.,

G =GnG'. (1)

The intersection G’ satisfies the group postulates,
being therefore a common subgroup of G and G'.

Corollary

Since property tensors cannot descend the
symmetry of the crystal, the intersection of the
property-tensor and the crystal point groups must
be equal to the erystal point group. Therefore,
the crystal point group must be a subgroup of the
tensor point group. This condition imposes re-
strictions upon the form of the property tensor
to be discussed in the following paragraphs.

A brief discussion of the notation used in this
publication seems to be in order. Point groups are
represented by their Schoenflies symbol. In this
notation, Cp, Ch,, and Cpy, stand for groups with
one n-fold rotation axis. Subseripts v and A in-
dicate existence of planes of symmetry containing
the rotation axis (o,) or one plane of symmetry
perpendicular to the axis (o4). Dn, Dya, and Du
are groups with two-fold rotation axes perpen-
dicular to the principal axis, that is the axis of
maximum 7. Subseripts d and h are used to sym-
bolize planes of symmetry that bisect two two-fold
axes (¢q) or a plane perpendicular to the principal
axis (o). S» (n=2k) are the groups of improper
rotations. Among them S, and Ss are usually sym-
bolized C'; and Cs;, respectively. Finally, O and T
with and without subseripts symbolize groups of
octahedral and tetrahedral symmetry, being char-
acterized by the existence of four three-fold rota-
tions axes. In crystals, due to requirements im-
posed by translational symmetry, the values of
n are restricted to 1, 2, 3, 4, and 6, which limits
the number of crystallographic point groups to
thirty-two. For uniform tensor fields in which any
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rotation about an axis parallel to the direction of
the field is an operation of symmetry one finds the
groups C ., Cosy and Dy with the meaning that
follows from the preceding paragraphs. The opera-
tions of symmetry are symbolized in the following
way: C,, n-fold rotation, o, symmetry reflection,
and i, inversion.

POLAR AND AXIAL PROPERTY VECTORS

Polar and axial vectors differ in their symmetry
behavior in that polar vectors are reversed by
spatial inversion, while axial vectors are not. The
symmetry point groups of uniform fields of polar
and axial vectors are readily determined after
finding the complete set of symmetry operations
in each case as follows.

All rotations about the direction of a uniform
vector field send the field into itself; all the powers
of C_, are therefore operations of symmetry. Re-
flection through o, planes, containing the direc-
tion of the field, while reversing axial vectors,?
does not affect the direction of polar vectors;
the point group of a uniform polar-vector field
is therefore C... Reflection through planes per-
pendicular to the direction of the field ¢, does not
affect the direction of axial vectors,” but it re-
verses polar vectors; the point group of a uniform
axial-vector field is therefore (. Typical of each
category are the polar, electric vectors E and D
and the axial, magnetic vectors H and B. Analo-
gously, the electric and magnetic dipole vector
operators are polar and axial, respectively.

Introduction of the time-reversal operator R,
in the magnetic field leads to the definition of a
new symmetry operator

(2)

although neither R, nor o, is a symmetry operator
of the field; for both R, and o, reverse the mag-

Go=R;*0v,

2 This is a consequence of the invariance of axial vectors
under inversion. Consider that the axial vector is reversed
by a rotation by = about an axis perpendicular to Ce; let
this operation be Cy’. The product operation Cy'+ay is equal
to inversion which must leave the axial vector unchanged.
Reflection through o, should then undo what C.’ did, i.e., it
must reverse the axial vector.

% Again, this is a consequence of invariance of axial
vectors under inversion. Inversion i may be expressed as
the product i =o+Co™ =04+ Cz. Since neither i nor Co"=C,
reverses an axial vector, this latter must remain invariant
under o.

McMILLAN

netic vectors. The order of the point group is then
doubled, and the new group is

Do (Cop) =CoptG0Cohy (3)

where C; is the subgroup of index two of spatial
symmetry and &,-C is the left coset of time-
reversal operators.

Following the same line of argument, it is pos-
sible to define the charge-conjugation operator
R. in electric fields which, after multiplication by
inversion i, leads in turn to the charge-conjuga-
tion operator of symmetry

i=R.i.

(4)

The order of the electric group is then doubled,
and the new group is

Do (C o) =Cloti+Cons, (5)

where (', is the subgroup of index two of spatial
symmetry and i-C., is the left coset of charge-
conjugation operators.

The point groups D (Cs) and Di(C..) are
the generating bicolor field groups whose inter-
sections with the colorless crystallographic point
groups give rise to the Shubnikov color groups.
It is to be understood, of course, that whenever
time reversal R, or charge conjugation R. are
used, they are included in the crystal point group.
Since by assumption this latter lacks the double-
valued attribute incorporated in the field group,
it inclules R, (or R.) as a symmetry operator as
well as its product by each and every spatial
operator of the point group, its order being there-
fore doubled. This new group is referred to as
the colorless group. It should not be mistaken
for the monocolor group in which neither R,
(or R,) nor any of its products is a symmetry
operator.

Table I displays the intersections of the 32 crys-
tallographic point groups with axial (C.s), polar
(C...), and bicolor (D) vector-field point groups
at different orientations. They are readily de-
rived from inspection of the stereographic pro-
jections of the crystallographic point groups* and
of course from comparison of the list of symmetry
operators of each crystallographic point group and
the infinite point groups €., Cohy and D,

¢N. F. M. Henry and K. Lonsdale, Eds., International
Tables for X-Ray Crystallography (Kynoch Press, Birming-
ham, England, 1952), Vol. 1.
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THEOREM OF GROUP INTERSECTION 795
Table A.L Intersections of the crystallographic point groups with vector-field point groups.? +
Co || Cn 74| Co LCn
Cooh Caov Don Coon Coov Deon
C, Ca C» Ch Dua C,=C C,=Ci Ca®
Cor Oux . Cai Dua Ci C,=Chn Can®
C C“ C"v C’w Dﬁl C’ Czl Cl'
Sk Sak Cx Sax CollCs
= . o ;- G T Da
Dna Sen Cho Dna
D @ Coe Du 2k £ G s
T Se Cs Se
CoiCh Ta Cs Cso Giy
C C D O cl CI Cl
. ik e On Se Cso Dy
Cn (n=2k C C Cy®
(n ) 1 1 2 Coll S
Ca (n=2k+1) Cy (6% Cy
Car (n=2k) Ci ol = Can® Coon Cov Don
Cnpr (n=2k+1) Cy C,=Cj, C,=C T Se Ca Daa
(0] C C. D,
Ao 0 Cus Cur Das
Coon Con Deop cs ” C
Che (n=2k) Co=Cur C.=Cy Cun® o Con Dy
Cne (n=2k+1) Ci C,=Ch C,=Cio T C e Dy
T C C, D.
Co ” Cy 1Cn A 2h 20 2h
Coon Cor ik Coll €' 1C4
C. Coov D,
Dyy C: C: D, ity = &L
D Can C G o C. Ch D,
0 C Ca D,
Day, Can Cao Day : o 2 o
Dix C: (o7 (o a4 || Co LS4
Dan Can Ca Dy Cooh O Don
Dsn Can Cay Dy Tq C,=Cu C.=Ci Ca®

* Groups with o4 containing Cy’ are listed under Co || Cs’ and excluded from Cq || 7d.

5C:1Ca.
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The spatial-symmetry intersection groups are
seventeen, classified into the following groups.

(1) Six axial- or polar-vector intersection
groups: Cy, Cy, C3, Cy, Cs, and C,. If the direction
of the field is taken as the z axis, C, is interpreted
in polar fields as the second-setting, monoclinic
point group C}, while in axial fields it represents
the first-setting monoclinic point group C;.

(2) Four polar-vector intersection groups: Cs,,
Csp, C4u, and Cq,.

(3) Seven axial-vector intersection groups: Ca,
Cs, Cany Con, Ci, Sy, and Cy,.

After introduction of the double-valued attri-
bute, the following new intersections with D_,
are obtained.

(4) Ten bicolor point groups, Ds, D;, D, Ds,
Dsi, Dsa, Doy, Dy, Dy, and Dgy. Their subgroups
of spatial symmetry are the intersections of the
corresponding crystallographic point group, with
C.» in the axial case and C,, in the polar case.
Thus, the intersections of, say, the colorless point
group D, with D_;(C.) and D_,(C.,) are
Dy, (Co) and Dy (Ch,), respectively, where the
Schoenflies symbol in parentheses stands for the
subgroup of index two of spatial symmetry. The
intersections with D_; that are equal to the point
group are the Shubnikov monocolor groups. Ap-
plication of the intersection theorem to electric
and magnetic polarization is discussed in the fol-
lowing paragraphs.

Electric Polarization

Since molecular electric polarization is a struc-
tural phenomenon involving molecular rearrange-
ment, it may spontaneously occur only in those
point groups and at those orientations at which
the intersections with C ., are equal to the crystal
point groups themselves, because in such cases
polarization will not descend the symmetry of the
configuration. The orientations at which

G=GnG/, (6)

are therefore the allowed directions of spontaneous
electric polarization. From the tables one finds
only ten point groups, the five C» (n=1, -+, 6)
and the five Cp, (n=1, +++, 6). It is easy to verify
that the electric polarization P can only have the
components indicated in Table IT referred to the
crystal reference frame.

A. McMILLAN

Table A.II. Components of spontaneous electric polarization.
The Schoenflies symbol is followed by the international
notation.

Point Group z Y z
Ci=1 Jek, Py i
Cy=m (first setting) P P, 0
(second setting) P 0 S
C:=2 (first setting) 0 0 P,
(second setting) 0 P, 0
C3=3, Cy=4,

Cs=6, C;y=mm 2,
Cs»=3 m, Ci,=4 mm,

Cey=6 mm 0 (1] P

Magnetic Polarization

Since magnetic polarization does not involve
molecular rearrangements, it may be found in all
thirty-two point groups. However, in most cases
it implies a descent in magnetic symmetry that
leaves the structural symmetry unchanged. A
typical case will serve as an example.

Ferromagnetic a-Fe crystallizes in the point
group @, space group Im3m. Its self-polarization
is due to spin alignment parallel to one of the
four-fold axes of symmetry. Application of the
theorem of group intersection and the time-
reversal operator R, introduced in Eq. (2) leads
to a complete description of the magnetic sym-
metry of the configuration. The full magnetic
group is given by

D= (Os+R*04)ND 4 (C, || Cs). )

The subgroup of index two of spatial symmetry
is in turn

Cu=0iC 4 (C || Cy). (8)

The bicolor group that accounts for the mag-

netic symmetry of a-Fe is then Dy, (Cy) which is

one of the ninety Shubnikov erystallographic

point groups discussed in an earlier publication.?
The structural symmetry of «-Fe, O,, remains

8J. A. McMillan, Amer. J. Phys. 35, 1049 (1967).
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unchanged, as revealed by X-ray diffraction ex-
periments.

SECOND-RANK PROPERTY TENSORS

The point groups of second-rank tensor fields
of different symmetries are readily derived from
inspection of the dyadic form of a second-rank
tensor.

A second-rank property tensor T transforms an
independent vector variable

u=uk;, (9)
into a dependent vector quantity
v=vk;, (10)

where k; are orthogonal unit vectors in the direc-
tions of z, y, and 2.5 Einstein summation is used;
namely, that whenever a subscript appears more
than once in a term, summation over such a sub-
script is to be understood, e.g.,

u=u;k;=ulk1+mk2+usk3~ (11)
The tensor T is then given by nine coefficients.
Tll Tl‘l T13
T=\ Tu T» Txu | (12)
T31 T32 7‘33

with the meaning of

v=vk;=T,kk;-uk;=T-u. (13)

The pair of unit vectors kk; without any sign
between them is called a unit dyad.” The tensor
T may then be rewritten in the dyadic form

Tllklkl T12k1k2 Tlaklkﬂ
T=| Tukk, Tokks Tkoks (14)
Taksk, Taksks Tasksks

An important property of second-rank tensors
that immediately follows from inspection of the

¢ A second-rank property tensor may also transform an
independent scalar quantity into a dependent second-rank
tensor.

7 In general, the dyad rs in the equation v =rs-u operates
on u in the following way. The scalar multiplication of s by
u gives a number which is used to multiply r. The resulting
vector v has then the direction of r, its length being given
by the product of the length of r and the scalar product s-u.
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dyadic matrix of Eq. (14) is that since inversion
reverses the three unit vectors, a second-rank
tensor is invariant under inversion, for

kik;= (—ki) (—k,) =i- (kik;). (15)

Property tensors are usually symmetric,® ie.,
coefficients with permuted subscripts are equal,
T.j=T;:. They are diagonalized by appropriate
choice of an orthogonal reference frame,® taking
the simpler, diagonal form

Tk kg 0 0
T= 0 Takoks 0 (16)
0 0 Tssksks

According to the values of Th, Ta, and T,
second-rank property tensors are classified as

Orthorhombic: T1# To 7% Tss,

Axial: Tu=Twn=Ti; Ts=T), and
Cubic or Isotropic: Tu=Twn=Tu="T.
Isotropic tensors reduce to a scalar

Tk, 0 0

0 Tkok, 0
0 0 Tkk,
kk; 0 0
=T 0 kk 0 =T (17)
0 0 Ikik;
since
kk, 0 0

kaks

8 Antisymmetric tensors have coefficients 7'i;=—T;:
and, of course, T;;=0. In three dimensions, second-rank
antisymmetric tensors are axial vectors. It should be
recalled that any second-rank tensor may be expressed as a
sum of a symmetric and an antisymmetric second-rank
tensor.

% As a matter of fact, the symmetric character may be
thought of as deriving from the experimental fact that
these tensors are always diagonal in a certain orthogonal
reference frame.
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is the identity tensor, i.e.,

u.-k.-sk.-k;-u.-k;. (18)
Isotropic tensors remain invariant under the
operations of the full rotation group® with in-
version, for which the symbol O (3) is used. There-
fore, this point group represents the symmetry
properties of scalar fields. An axial tensor remains
invariant under any rotation about the symmetry
axis k;.!! Since the elements of the tensor remain
invariant under 180° rotations about all axes
perpendicular to k; and under inversion, its point
group i8 D_. Orthorhombic tensors are sent into
themselves by 180° rotations about each k; axis.
Being in addition invariant under inversion, their
point group is Da.

In order to study the intersections it is con-
venient to classify crystals into

(1) Cubic groups X, including Oy, O, T4, T},
and T,

(2) Axial groups @, including C3, Ci, Cs, Cs,
C‘n Cﬁvy Cﬂh: Cﬂh; Cﬁhy DBy D41 Dﬁy D3h1 Dlhy Dﬁhl
Dzd, Dzd, Cs.', and SA,

(3) Orthorhombic groups ®, including Ca, Da,
and Dy,

(4) Monoclinic groups M, including Cs, C, and
Cz};, and

(5) Triclinic groups 3, including C; and C;.

Table I1I gives the intersections at the orienta-
tions at which the descent of symmetry, if any at
all, is minimum. In the cases labelled with a super-
script, any other orientation descends the sym-
metry of the intersection.

Since physical properties represented by second-
rank tensors must be restricted to those types and
orientations at which the intersection is equal to
the crystallographic point group, it is readily
concluded that the property tensor has the fol-
lowing forms and number of independent co-
efficients.

10 The full rotation group is the group of all proper
rotations; it is symbolized by 0*(3). The group O(3) is
the group of all the point-symmetry operations that can be
performed on a sphere, namely, all proper and improper
rotations. "

11 The k;(2) axis is chosen, by convention, as the axis of
rotation.

A. McMILLAN

Table A.IIL

Intersections of the second-rank tensor field

groups and the crystallographic point groups. Intersections
without a superscript are independent of orientation.

0(3) Deon Dan
X X a* ®>
(3 a a° ®b
® ® ®R° ®®
m n amd e
3 3 3 J

*Ce parallel to z, , or 2.
bCy, Cy,Cr" parallel to z, y, 2.
®Cqp parallel to z.

dCq parallel to zin first setting, to y in second setting.
©Cz parallel to z in first setting, to y in second setting.

Cubic groups:

T 00
g 0 , one independent
coefficient,
00 09" T
Azial groups:
L0250,
O T. O |, twoindependent
coefficients,
(0] 0 T||
Orthorhombic groups:
Tll O 0
O T O |, threeindependent
coefficients,
0 0 Tu
Monoclinic groups:
Tu T O
first setting: Tw T» O |,
00 T
Tll 0 Tl:i
second setting: 0 Tr» O
Tl.’l 0 Taa
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Since the direction of only one axis is specified
in the table (Table III), the number of inde-
pendent coefficients is four.

Triclinic groups:

Tll Tl'.! T13
Tl‘Z Tﬂ‘Z T23
Txx T23 T33

Since there are no restrictions in the orientation,
the number of independent coefficients is six.

Symmetry requirements do not exclude the
existence of property tensors of higher symmetry
in less symmetric crystals such as axial tensors
in orthorhombic crystals or scalar properties in all
crystal groups. The conditions specified above
actually state the mazimum number of coefficients
needed to determine completely a second-rank
tensor property in a given crystal system.

ACKNOWLEDGMENT

The author is indebted to Dr. S. A. Marshall
for his interest and useful suggestions during the
preparation of the manuseript.



APPENDIX B

Tables of Hyperfine Interactions
(prepared in collaboration with
Dr. Teodoro Halpern)

TABLE B.l. Hyperfine Parameters

Isotropic Splitting

Anisotropic Splitting

ain/h, A-amldan, K 2HgININST
Nucleus % Abundance Nuclear Spin | Au-lz/kc Orbital a.u. MHz Gauss Orbital <3, au. MHz Gauss
| 1 n v v Vi Vil Vil 1X % XI XIl
Iy 99.9844 1/2 425759 Is 1,420 508
24 156 x 1072 1 0.65357 218 8
3y - 1/2 45414 1,515 542
3he 107 - 105 1/2 3,235 2.6 6125 2,192
6i 7.43 1 0.6265 2 2.09 109 3
i 92.57 3/2 1.6547 288 103
98e 100 3/2 -0.5983 .15 -358 -128
10 18.83 3 0.4575 1.7 677 %2 % 0.7756 s 159
11g 8117 3/2 13660 2,022 23 133 a6
3¢ 1.108 1/2 10705 35.0 318 119 16618 23 7.8
1ay 99.635 1 0.3076 60.5 1,557 557 3.0205 7 a9
1N 0.365 1/2 -0.4315 2,184 -781 -163 -58.3
1o 3.7x 102 5/2 -0.5772 96.1 4,631 -1,659 4.9490 -358 -128
19 100 1/2 4.0055 143 47959 17,160 7.5451 3,190 1,356
21ne 0.257 3/2 0.333 204 27,630 9,8% 10.906 460 165
2pae - 3 0.4434 3s 6.66 7 8.4 17.004 945 338
Ba 100 3/2 1.1262 621 224 2,401 859
2pae - 4 0.322 174 62.3 17.004 687 26
g 10.05 5/2 -0.2606 153 -333 -119 24.919 -814 291
2p 100 512 11094 2.6 2,748 983 3 1.088 151 54.0
s 470 1/2 -0.8458 3.1 3403 -1218 2.001 215 -769
3lp 100 1/2 1.723% 73 Q275 3,676 3.266 706 253
£ 0.74 3/2 0.3266 9.8 2,724 975 4.8364 198 0.8
E - 3/2 0.508 423 156 308 110
el 75.4 3/2 0.4172 134 4613 1672 6.7688 354 127
36c1 - 7 0.4893 548 1,961 a5 148
3¢y 2.6 32 0.3472 3889 131 25 106
B3 93.08 3/2 0.1987 4s 813 145 519 8.9747 224 80.1
g 119 x 10°2 4 -0.2470 -180 -64.4 -218 9.5
4k 691 32 01092 80 286 123 .0
a2 - 2 -0.434 317 -3 -488 -175
4ca 0.13 02 -0.2865 174 -418 -150 17.7403 -637 -228
osc 100 712 1.0344 212 1,836 657 3 1.4294 18 66.2
armi .75 512 -0.2400 38 -498 -178 19751 -59 -211
o1i 2.401 /2 -0.2401 -498 -178 -59 -21.1
Hys - 712 1.02 284 2,424 867 2.5888 31 118
S0v 024 6 0.4245 1,008 361 138 .4
sly 99.76 102 1.1193 2,658 951 363 130
e 9.54 32 -0.2406 2.1 -645 -231 3.2812 -9 175
53Mne - 112 1.100 359 3297 1180 4.0597 560 200
55Mn 100 512 10553 3163 1132 537 192
5Tre 2.285 1/2 0.138 39.8 459 164 4.9306 8 30.4
56Co* - 4 0.7347 338 2,692 963 5.8997 544 195
57c0° - 02 101 300 134 a1 2617
5800 - 2 1.544 5661 2,026 1,142 09

@Radioactive element.
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TABLE B.| (Contd.)

Isotropic Splitting

Anisotropic Splitting

2ugaNuN<r

2]
Nucleus % Abundance Nuclear Spin | ?ﬂN:zNI/kté Orbital 5 Z‘W.%s(m' Gauss Orbital <>, au. MHz Gauss
| I n v v Vi vil Vil 1X X XI XIl
$co 100 7/2 1.0103 s 338 3700 1,325 3 5,897 1 267
60co+ - 5 0.46 1,686 603 340 122
b1y 125 3/2 03719 4.1 1523 545 6.9724 31 118
6cy 69.09 3/2 11285 52.4 497 170 8.1540 1,154 a3
64cye - 1 0.30 1315 an 307 110
65cu 3091 32 1.2090 5300  1,89% 1,23 a2
67zn 4.1 512 0.2664 57.0 1,269 454 9.450 316 113
696a 60.2 32 1.0219 87.3 7454 2,667 % 2.8908 370 132
Tlga 3.8 32 1.29%4 9471 3389 an 169
T3Ge 7.61 9/2 -0.1485 120 -1,494 -535 4733 -88 -315
T5ps 100 3/2 0.7292 157 959 3431 6.8542 627 224
Tise 7.50 1/2 0.8131 198 13461 4816 9.2715 945 338
Mges - 712 -0.2211 3660 1310 -257 -92.0
gy 50.57 3/2 1.0667 23 2,700 7,764 119994 1,605 574
8lgr .43 3/2 1.1499 23394 8310 1,730 619
83r 11.55 9/2 -0.164 293 -4022  -143% 14,8867 -306 -109
8re - 9/2 0.170 4169 1492 317 113
8lgye - 32 102 55 163 1,388 091 20.097 2,571 920
85Rb 7.8 5/2 04111 559 200 1,03 371
86Rp* - 2 (-)0.65 (1884 (-)316 (-11,638  (-1586
87Rp 21.2 312 13932 1,89 678 3511 1,256
87sr .02 9/2 -0.1845 30.0 -4,628  -1,656 25.8947 =591 -2,144
8y 100 1/2 -0.2086 376 -656 -235 '] 1717 a8 -16.0
9zr 1.23 512 -0.3958 1 -1,458 -522 23974 -119 -22.6
i) 100 9/2 1.0407 50.0 4309 155 3.1220 407 146
%Mo 15.78 5/2 -0.2774 55.6 -1,290 -462 3.9001 -136 -48.7
Mo 9.60 5/2 -0.2833 -1317 -an -139 -49.7
9ce - 9/2 0.9583 610 4887 1,749 4.7390 569 204
9Ru 12.81 s/2 -0.19 6.2 -1,02 -376 5.6438 -134 -41.9
101gy 16.98 5/2 -0.21 -1,163 -416 -149 -53.3
103pn 100 1/2 -0.1340 .3 -799 -286 6.6185 -111 -39.7
105pg 2.23 512 -0.174 763 -1,110 -397 7.6666 -167 -59.8
107pq 51.35 1/2 -0.1723 813 -1,170 -419 8.7911 -190 -68.0
109pg 48.65 1/2 -0.1981 -1,346 -482 -218 -78.0
1lpqe - 1/2 -0.221 -1,501 -537 244 -81.3
Llcg 12.8 1/2 -0.9028 86.1 6,500 2,32 9.9041 -1,121 -401
g 12.34 1/2 -0.9444 6,800  -2,433 1,173 -420
183y 4.16 92 0.9310 123 9551 3417 5p 44512 520 18
115+ 95.84 9/2 0.9329 9571 3425 521 186
155 035 1/2 -1.392 160 -18,640 6,669 6.7468 -1,178 -421
Wisp 7.67 1/2 -1.517 20313 -7,268 -1,283 -459
1195, 8.68 1/2 -1.587 -21,250  -7,603 -1,343 -481
L2lgp 57.25 5/2 1.019 200 17,09 6,089 9.2313 1,180 422
::33:: 4‘2),: ::: Ti:s 9216 3297 639 229
e 7-03 . -1.345 2 22584 -8,081 119366  -1,671 -598
o lm- S 0.35” -21211 9,738 -2,013 -720
e : # O.M w 0459 7,320 14.8724 1,589 569
. 13614 4871 1,057 3718
:z: ::,: ;Z ;;::0 336 33,055 -11,827 17.8266 2,633 -942
g . 9,793 3,504 780 219
i:zz :/2 215 6s 210 3,1 1,349 23.2545 6,270 2,243
/2 2.4 3929 1,406 6,532 2,337



TABLE B.I (Contd.)

Isotropic Splitting

Anisotropic Splitting

o/, A2 = amR (0, 2gINAN<r
Nucleus % Nuclear Spin | MHz/kG Orbital a.u. MHz Gauss Orbital <, au. MHz Gauss
| I n v v vi Vil vill 1X X XI XIl
Blgge - 5/2 106 6s 21.0 1,859 665 5 23.2545 3,091 1,106
B33¢g 100 112 05585 980 351 1,629 583
134cs+ - 4 0.564 989 354 1,645 589
135¢5e - 02 0.594 1,042 33 1,732 620
Bcse - 02 0.618 1,04 388 1,802 645
135, 6.59 3/2 0.4230 313 1318 an 29.0659 1,582 552
1378, .32 3/2 04732 1474 521 1,725 617
1385 0.089 5 0.5617 389 1,84 653 4 3.694 260 93.0
1395 99.911 102 0.6014 1953 699 21 99.8
lges - 02 0.035 403 118 22 43005 18.9 6.76
14lp 100 5/2 1195 08 a9 49127 736 263
143ng 12.20 12 -0.212 433 -984 -352 5.5410 -189 -67.6
15ng 830 12 017 615 20 118 @2
17nge - 9/2 0.037 134 a9 .7 9.20
Wism 15.07 02 -0.15 4.2 -579 -207 6.8637 -129 -46.2
495 1By H -0.12 -463 -166 -103 -36.9
Blgy am 512 1.049 a7 4179 1,495 7.5645 995 35
153gy 52.23 5/2 0.4638 1,848 661 “0 157
B4y - 3 051 2,032 721 484 173
15564 14.68 3/2 -0.12 9.1 -493 -176 8.2938 -125 -4
15764 15.64 3/2 -0.17 -698 -250 -177 -633
1591 100 3/2 0.172 50.6 328 1169 9.0537 876 313
161py 18.73 5/2 012 52.1 523 187 9.8451 148 53.0
163py 24.97 512 0.16 698 250 198 0.8
165Ho 100 12 0.722 53.1 3200 1159 10,6693 966 36
167¢r 2.8 12 0.104 55.2 480 172 11.5275 150 53.7
1691m 100 1/2 0.349 56.8 1657 5929 12.4204 544 195
17lyp 14.21 1/2 0.751 58.4 L 1311 13.3495 1,257 450
1Typ 16.08 5/2 021 .04 -366 -352 -126
1By 97.40 112 0.486 718 2918 1,04 54 3.3816 206 37
1761y 2.60 6 053 312 119 225 8.5
177y 18.39 112 0.13 89 901 2 4.4934 3 2.1
1794¢ 13.78 9/2 -0.080 -555 =199, -45 -16.1
1817, 100 712 0.509 93.0 3951 1416 5.6057 358 128
183 14.28 1/2 0175 102.4 1,498 53 6.7504 148 53.0
185ge 37.01 512 0.9586 111 8911 3,188 7.9414 955 302
187ge 62.93 5/2 0.9684 902 3221 964 15
18705 - 1/2 0.18 120 1,800 64 9.1859 207 .1
18905 16.1 3/2 0.33%07 33001 1183 381 136
191y 385 3/2 0.0813 128 1,107 39 10.4886 107 383
193, 615 3/2 0.086 1171 a9 113 0.4
195pt 3.7 1/2 0.9153 135 10,366 3,709 11.8527 1,360 487
97py 100 32 0.0731 143 874 33 13.2809 122 a7
198Ay* 2 2 0.19 2,21 813 316 113
19y¢ 2 32 012 1,434 513 200 716
1974ge - 1/2 019 150 9,923 3,550 14.6560 1,452 520
199yg 16.86 1/2 0.760 9,541 3416 1,397 500
Blyg 1324 3/2 -0.280 -3517 1,258 S5 -
2031 2.52 1/2 2.433 205 a6 14893 6p 15553 2,305 85
2057) 70.48 1/2 2.451 42,03 15040 2,328 833
207pp a1 12 0.8899 258 19195 6,88 10.9883 1,226 439
209g; 100 9/2 0.6842 31 17,869  63% 14,5706 1,250 a7
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Angular Parameters

TABLE B.II.
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